首页

Material Design数据可视化指南

鹤鹤

如果您想订阅本博客内容,每天自动发到您的邮箱中, 请点这里

写在前面

2019年6月18日Material Design更新了设计指南中数据可视化部分,这是谷歌数据可视化团队形成的一套全面的数据可视化指南, 涵盖了设计原则、图表分类、图表的选用、样式设计、交互设计、仪表板设计等方面。个人阅读后进行了翻译,希望能够分享给更多对数据可视化有兴趣的设计同学!


全文章节目录:

原则

类型

选择图表

样式

行为

仪表板




数据可视化

数据可视化就是用图形描绘信息。




原则

数据可视化是一种以图形描绘密集和复杂信息的表现形式。数据可视化的视觉效果旨在使数据容易对比,并用它来讲故事,以此来帮助用户做出决策。


数据可视化可以表达不同类型和规模的数据,包括从几个数据点到有大量变量的数据集。

Image title





类型

数据可视化可以以不同的形式表达。图表是表达数据的常用方式,因为它们能够展示和对比多种不同的数据。


图表类型的选择主要取决于两点:要表现的数据和表现该数据的用意。该指南描述各种类型的图表及其用例。


图表类型


1. 随时间变化

随时间变化的图表显示一段时间的数据,例如多个类别之间的趋势或比较。


常见用例包括:

股价表现、卫生统计、年表

Image title



2. 类别比较

类别比较图表是多个不同类别数据之间的比较。

常见用例包括:

不同国家的收入、热门场地时间、团队分配

Image title



3. 排名

排名图表显示项目在有序列表中的位置。

常见用例包括:

选举结果、性能统计

Image title



4. 占比

占比类图表显示了局部与整体的关系。

常见用例包括:

产品类别的综合收入、预算

Image title



5. 关联

关联类图表显示两个或以上变量之间的关系。

常见用例包括:

收入和预期寿命

Image title



6. 分布

分布类图表显示每个值在数据集中出现的频率。

常见用例包括:

人口分布、收入分布

Image title



7. 流程

流程类图表显示了多个状态之间的数据移动。

常见用例包括:

资金转移、投票计数和选举结果

Image title



8. 关系

关系图表显示多个项目之间的关系。

常见用例包括:

社交网络、词图

Image title






选择图表

面对多种类型的图表,以下指南提供了关于如何选择合适的图表见解。



显示随时间的变化

可以使用时间序列图表来表示随时间的变化,就是按时间顺序表示数据点的图表。表示随时间变化的图表包括:折线图,柱状图(条形图)和面积图。


Image title

*基线值是y轴上的起始值。



柱状图(条形图)和饼图

柱状图(条形图)和饼图都可用于显示比例,表示部分与总体的对比。

· 柱状图(条形图)使用共同的基线,通过条形长度表示数量

· 饼图使用圆的圆弧或角度表示整体的一部分


柱状图(条形图),折线图和堆叠面积图在显示随时间的变化方面比饼图更有效地。由于这三个图表都是使用相同的基线,因此可以更轻松地根据条形长度比较值的差异。

Image title



面积图

面积图有多种类型,包括堆叠面积图和层叠面积图:

· 堆叠面积图显示多个时间序列(在同一时间段内)堆叠在一起

· 层叠面积图显示多个时间序列(在同一时间段内)重叠在一起


层叠面积图建议不要使用超过两个时间序列,因为这样做会使数据模糊不清。取而代之,应当使用堆叠面积图来比较一个时间间隔内的多个值(横轴表示时间)。

Image title





样式

数据可视化使用自定义样式和形状,使数据更容易理解,以适合用户需求。


图表可以从以下方面进行优化:

· 图形元素

· 文字排版

· 图标

· 轴和标签

· 图例和注释



不同类型数据的样式设计

可视化编码是将数据转换为可视形式的过程。独特的图形属性可应用于定量数据(如温度,价格或速度)和定性数据(如类别,风味或表达式)。


这些图形属性包括:

· 形状

· 颜色

· 大小

· 面积

· 体积

· 长度

· 角度

· 位置

· 方向

· 密度



不同属性的表现

多个视觉处理方法可以综合应用于数据点的多个方面。例如,在条形图中,条形颜色可以表示类别,而条形长度可以表示值(如人口数量)。

Image title

形状可用于表示定性数据。在此图表中,每个类别由特定形状(圆形,正方形和三角形)表示,这样可以在一张图表中轻松实现特定范围的比较,同时也可以进行类别之间比较。



1. 形状

图表可以运用形状,以多种方式展示数据。形状的设计可以是有趣的、曲线的,或者和高保真的等等。


形状程度

图表可以展示不同精度程度的数据。用于细致研究的数据应该用适合交互的形状(在触摸大小和功能可见性方面)展示。而旨在表达一般概念或趋势的数据可以使用细节较少的形状。

Image title



2. 颜色

颜色可用于以四种主要方式区分图表数据:

· 区分类别

· 表示数量

· 突出特定数据

· 表示含义


颜色区分类别

Image title

例:圆环图中,颜色用于表示类别



颜色表示数量

Image title

例:地图中,颜色用于表示数据值。



颜色突出数据

Image title

例:散点图中,颜色用于突出特定数据。



重点区域

在不滥用的情况下,颜色可以突出焦点区域。不建议大量使用高亮颜色,因为它们会分散用户注意力,影响用户的专注力。

Image title



颜色表示含义

Image title



无障碍

为了适应看不到颜色差异的用户,您可以使用其他方法来强调数据,例如高对比度着色,形状或纹理。

将文本标签应用于数据还有助于说明其含义,同时消除对图例的需求。



3. 线

图表中的线可以表示数据的特性,例如层次结构,突出和比较。线条可以有多种不同的样式,例如点划线或不同的不透明度。


线可以应用于特定元素,包括:

· 注释

· 预测元素

· 比较工具

· 可靠区间

· 异常


Image title



4. 文字排版

文本可用于不同的图表元素,包括:

· 图表标题

· 数据标签

· 轴标签

· 图例



图表标题通常是具有最高层次结构的文本,轴标签和图例具有级别的层次结构。

Image title



字重

标题和字重的变化可以表达内容在层次结构中的重要程度。但是应该保持克制,使用有限的字体样式。

Image title



5. 图标

图标可以表示图表中不同类型的数据,并提高图表的整体可用性。


图标可用于:

· 分类数据:用于区分组或类别

· UI控件和操作:例如筛选,缩放,保存和下载

· 状态:例如错误,空状态,完成状态和危险


在图表中使用图标时,建议使用通用可识别符号,尤其是在表示操作或状态时,例如:保存,下载,完成,错误和危险。

Image title




6. 坐标轴

一个或多个坐标轴显示数据的比例和范围。例如,折线图沿水平和垂直坐标轴显示一系列值。

Image title



柱状图(条形图)基线

柱状图(条形图)应从为零的基线(y轴上的起始值)开始。从不为零的基线开始可能导致数据被错误地理解。

Image title



坐标轴标签

标签的设计应体现图表中最重要的数据。应根据需要使用标签,并在UI中保持一致性。他们的出现不应该妨碍查看图表。

Image title



文字方向

为便于阅读,文本标签应水平放置在图表上。


文字标签不应该:

· 旋转

· 垂直堆叠

Image title



7. 图例和注释

图例和注释描述了图表的信息。注释应突出显示数据点,数据异常值和任何值得注意的内容。

Image title

1. 注释

2. 图例


在PC端,建议在图表下方放置图例。在移动端,将图例放在图表上方,以便在交互过程中保持可见。



标签和图例

在简单图表中,可以使用直接标签。在密集的图表(或更大的图表组的一部分)中,可以用图例。

Image title



8. 小显示屏

可穿戴设备(或其他小屏幕)上显示的图表应该是移动端或PC端图表的简化版本。

Image title





行为

图表具有交互模式,使用户可以控制图表数据。这些模式可以使用户专注于图表的特定值或范围。


以下推荐的交互模式,样式和效果(如触觉反馈)可以提高用户对图表数据的理解:

渐进式披露

提供了按需求逐步展示详细信息的明确途径。

直接操作

允许用户直接对UI元素进行操作,最大限度地减少屏幕上所需的操作数量,包括:缩放和平移,分页和数据控件。

改变视角

使一种设计可以适用于不同的用户和数据类型,例如数据控件和动效。


1. 渐进式披露

使用渐进式披露显示图表详细信息,允许用户根据需要查看特定数据点。

Image title


2. 缩放和平移

缩放和平移是常用的图表交互,会影响用户对图表数据深入的研究和探索。


缩放

缩放改变界面显示的远近。设备类型决定了如何执行缩放。

· 在PC端,通过单击、拖动或滚动进行缩放

· 在移动端,通过捏合进行缩放


当缩放不是主要操作时,可以通过单击和拖动(在PC端)或双击(在移动端)来实现。


平移

平移让用户能够看到屏幕之外的界面。它应该合理的展示数据的价值。例如,如果图表的一个维度比另一个维度更重要,则平移的方向可以仅限于该维度。

· 平移通常与缩放功能同时使用。

· 在移动端,平移通常通过手势实现,例如单指滑动。

Image title



3. 分页

在移动端,分页是一种常见模式,让用户通过向右或向左滑动来查看上一个或下一个图表。

Image title

在移动端,用户可以向右滑动以查看前一天。



4. 数据控制

可以使用切换控件,选项卡和下拉菜单筛选或改变数据。

用户调节控件时,这些控件还可以显示指标。

Image title

切换控件,选项卡和下拉菜单可以更改或筛选数据。



5. 动效

动效可以强化数据之间的联系,提升交互体验。应该有目的地使用运动(不是装饰性地),表达不同状态和空间之间的联系。

运动应该是合理,平稳,反应灵敏,不会妨碍用户的使用。

Image title在此示例中,图表数据从按天显示动态切换到按周显示。转换期间不会显示所选日期范围之外的数据,从而降低了复杂性。



Image title动画能够体现两个不同图表的相关性。



6. 空状态

图表数据为空的情况下,可以提供相关数据的预期。

在合适的情况下,可以展示角色动画创造愉悦和鼓励。



Image title有特色的动画提升了空状态的效果。







仪表板

在称为仪表板的UI界面中,数据可视化通过一系列图表实现。多个独立的图表有时可以比一个复杂的图表更好地表达故事。



仪表板设计

仪表板的目的应在其布局,样式和交互模式中体现。无论是用来制作演示文稿还是深入研究数据,它的设计应该适合它的使用方式。


仪表板应该:

· 突出最重要信息(使用布局)

· 根据信息层级确定信息的焦点(使用颜色,位置,大小和视觉权重)


Image title

应根据对数据的需求确定信息的优先级并进行安排。在此示例中设计仪表板,考虑了以下用户问题:

1. 需要注意的问题
2. 发生问题的时间

3.发生问题的位置

4.受问题影响的其他变量



1. 分析类仪表板

分析仪类表板让用户能够研究多组数据并发现趋势。通常,这些仪表板包含能够深入洞察数据的复杂图表。


用例包括:

· 随时间变化的突出趋势

· 回答“为什么”和“假设”的问题

· 预测

· 创建有深度的报告


分析类仪表板示例:

· 跟踪广告活动的收效

· 跟踪产品在其整个生命周期中的销售额和收入

· 随时间变化的城市人口趋势

· 跟踪随时间变化气候数据


Image title

分析类仪表板显示气候数据



2. 操作类仪表板

操作类仪表板旨在回答一组预设的问题。它们通常用于完成与监控相关的任务。

在大多数情况下,这些类型的仪表板具有一系列关于当前信息的简单图表。


用例包括:

· 跟踪目标的当前进度

· 实时跟踪系统性能


操作类仪表板示例:

· 跟踪呼叫中心的活动,例如呼叫音量,等待时间,呼叫长度或呼叫类型

· 监控在云端应用程序的运行状况

· 显示股市情况

· 监控赛车上的遥测数据


Image title

操作类仪表板显示设备存储指标



3. 演示类仪表板

演示类仪表板是为感兴趣的主题提供的展示视图。

这些仪表板通常包括一些小图表或数据卡片,用动态标题描述每个图表的趋势和见解。


用例包括:

· 提供关键绩效指标的总览

· 创建高级执行情况的概要


演示类仪表板示例:

· 提供投资账户绩效的总览

· 提供产品销售和市场份额数据的概要


Image title蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、网站建设 平面设计服务

数据可视化大屏设计经验分享

涛涛

 

如果您想订阅本博客内容,每天自动发到您的邮箱中, 请点这里

前言 



说起数据可视化设计,如今绝对是热门的设计之一,而真正懂数据可视化设计的设计师却不多,随着大数据产业的蓬勃发展,很多企业都开始应用数据可视化。很多UI设计师突然会接到公司数据可视化设计的需求,如果不了解数据可视化的设计,那么肯定是一头雾水,不知从何入手。


什么是数据可视化?

数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。简而言之就是把枯燥无味的数据,通过图形化设计表现,达到一种更加精准和的数据分析和表达


下面要跟大家分享的是,我经手的一个真实数据可视化大屏项目改版,接下来会分享给大家一套全面的数据可视化技法,包括科学的运用图表、运用色彩、把控数据层级以及视觉层级,达到美学形式与功能需要齐头并进。



 案例解析 


首先看下线上旧版的设计,分析存在的问题。


undefined


问题

1、左侧大面积文字导致视觉不平衡,且密集

2、整体用色暗淡,图表用色没有规则

3、图表运用不恰当,不能有效传达数据信息

4、缺标题,数据信息优先级排列不恰当


结合这些问题作出了改版,


undefined


因为是改版所以能够看到线上真实的数据信息,这样旧版的数据呈现就能给到重要的设计参考价值,例如能够知道TOP10热门关键字大概是几个字,在设计图表时就会依据字数的长短来参考设计,也可以知道是否有极端数据,从而运用更适合的图表呈现等等。


下面依次对照新改的版本,解决旧版出现的问题。


问题一:

1、左侧大面积文字导致视觉不平衡,且密集


undefined


注解:

由于左半部分有大篇幅的文字,视觉上会显得密集,容易视觉疲劳,右半部分大面积的色块图表使得整个界面视觉上不平衡。


解决方案就是在把文字用排行榜图形分开,放到文字中间部分,这样就丰富了只有文字的单调设计,整体视觉较为平衡和谐,并且这样还能够突出强调重要数据信息。



问题二:

2、整体用色暗淡,图表用色没有规则



undefined


注解:

提取旧版的颜色,色彩很暗淡,对于深色背景来说,这样的配色方式并不会有好的视觉表现。


暗色背景通常用高饱和高明度的颜色,对比暗色背景更能聚焦视觉,突出数据可视化的表现,亮丽的色彩能够让数据可视化设计的更加绚丽。


数据可视化大屏设计慎用大面积的渐变色,小面积可尝试,一般大屏都是拼接屏,品牌不一样色差会表现不一,所以初稿出来后可以先去大屏上看下效果。



undefined


注解:

图表用色没有规则,上图三个图表都表现 “正面” “中立” “负面” 三个维度数据信息,但在用色上没有一个统一的规则,例如三个图表中黄色分别代表不同的维度信息,这样就无法建立观者的认知。




undefined


“负面”有警示的作用,运用红色调较为合理,“中立”色彩情绪上适合黄色调,黄色会给人中性的感受,例如马路上的等待的黄灯,例如一片树叶从绿色到黄色再到枯萎灰色,给人一种过程中的中立情绪感受等,“正面”就是给人积极的一面,所以绿色或者主题色蓝色都是很恰当的。



问题三:

3、图表运用不恰当,不能有效传达数据信息


undefined


注解:

同一个界面中左侧文字TOP10属性类似的“核心媒体TOP10”展示形式最好能有共性。旧版运用了柱状图并不恰当,尤其是标题字数过多时候并不推荐使用柱状图文字倾斜的展示方式,改版后加上相同的排行榜图标,数据直接展示出来,TOP10的效果会更好。



undefined


注解:

数据需要对比分析,显然这个玫瑰图表并不能很好的说明对比,每个维度大小排列没有规律,实际数据分布不均匀,导致没有对比的效果,改版后突出总的数据,用条形图从大到小依次排列各维度数据,数据上有对比,视觉上更有主次。

undefined


注解:

首先是旧版用色不恰当,最严重的问题是图表上没有任何数据,因为展示型的大屏,很少有交互行为,这样的设计是不可取的,不能让观者去猜百分比数据,数据可视化就要用图表数据的形式展示出来最直接的信息,除非是展示趋势并不是准确的数据。



undefined


注解:

旧版用的条形堆积图,其实更适合百分比数据的对比呈现,一个维度下面有若干个子项,比较适合分组柱状图(新改版为分组柱状图)或者分组条形图更为恰当。



undefined


注解:

旧版色彩搭配不和谐,趋势图需要突出趋势线,而不是体现数据的面积,红框注释不够直接尤其在颜色过多时,更不好分辨各个颜色指向的维度,新版的设计则能够准确指出各个维度的趋势线。



问题四:

4、缺标题,数据信息优先级排列不恰当


undefined


注解:

新闻的标题跟转发数才是观者关注的,而来源和时间就是次要关注信息,所以视觉上要为观者分出层级,这样不仅能够使观者看着更舒适,视觉上也很有层次,不杂乱。


旧版标题、来源、时间、转发数、都是相对于内容居中的状态,这种排版是不符合表格排版规则的,简单的做法就是文字左对齐,数字右对齐,数字右对齐能够更快速识别数据量大小,跟其他数据的对比,文字左对齐则是根据人从左到右的阅读习惯。


之前专门总结过一篇数据表格如何排版的文章,想了解的朋友,文章下面有数据可视化系列文章链接。



undefined


注解:

设计数据可视化大屏时一定要考虑用户浏览数据的优先级的构架,例如要遵循先总后分,先具体后抽象的逻辑,上图旧版把趋势放到了页面的第一视觉位置,就有点宣兵夺主了,根据先具体后抽象,改版后具体数据放到第一视觉位置,趋势信息排后。


旧版大屏没有标题,我是谁?我在干什么?我要去哪里?所以标题务必得有。


总结:

说了这么多设计要点,新手可能还是不知道设计的切入点在哪里,所以总结一个数据可视化设计分三步走法。


第一步:了解数据要表达的本质。

拿到一组数据,先分析主次,这组数据要表达什么?是展示数据,还是对比数据,或是实时监控数据,从而确定展示的优先级。


第二步:确定使用图表。

通过了解数据要表达的本质后,选择适合他的图表,这时候就需要打开几个开源的图表网站找图表,记住你的图表用的是网站的哪一个,开发如果找不到就丢给他网址。

网站有:Fusion Design、蚂蚁数据可视化-AntV、ECharts Examples、Highcharts


第三步:整体效果调整

功能性的数据展示都没问题,还要看下整体效果,例如用了过于多的柱状图,可能就会影响了整体的美感,图表尽可能多样性,数据表达信息就要用不同的图表展示。




 最后 


数据可视化设计核心就是,通过美学设计形式把数据精准和的分析和表达


数据可视化设计是目前较为热门的设计工种,通过本文分享的项目迭代案例,希望能够让你对数据可视化有些许了解。

译文 | 掌握这25条小贴士,数据可视化秒提升!

鹤鹤

可视化不是单纯的数据展示,其真正价值是设计出可以被读者轻松理解的数据展示。设计过程中的每一个选择,最终

都应落脚于读者的体验,而非设计者个人。

来做一个数据可视化报表 遇见大数据可视化系列文章之三

涛涛

上篇文章简单的介绍了数据可视化的基础,将数据进行设计可视化后,可以让我们有一种全新的方式去认识数据,改变对数据的呈现和思考方式。那现在就让开始做一份数据的可视化表,一步步的来看下我们如何获取数据,以及如何进行可视化的展示。

在上章内容中,提到了关于【数据可视化迭代过程】的步骤,这也能看出整个过程包含的步骤,大致有:

  1. 确定主题 - 2.数据获得 - 3.图表选择(表达)- 4图表绘制

当然了我们也可以看到可视化是要一个不断迭代的过程,步骤之间都需要多次的迭代修改的。

确定主题

这肯定是第一步了,在做数据可视化的时候,首先你要明了你要做什么,想要从数据获中取什么信息,有了目标才能明确的往下做。

那我们这次还是来做关于空气质量PM2.5的数据展示,了解历年来PM2.5的实际情况和发展趋势。

数据可视化基础研究 遇见大数据可视化系列文章之二

涛涛

信息图

信息图本身是一个合成词,由信息和图两个词组成多称之为(Infographics或Infographics Graphics),在40年代的时候就开始出现,使用在报纸及新闻类杂志方面,其中杰出的代表阿根廷的信息图先驱Alejandro Malofiej,在1993年西班牙设立了以他为名的主要针对信息图表设计的Malofiej奖。

在报纸、杂志等纸质媒体中,为了让读者感到新奇且直观容易的理解,运用了大量的信息图解的表现。

如下图所示:

未来已来,变革中的数据可视化-遇见大数据可视化系列文章之一

涛涛

今天,大数据已无所不在,并且正被越来越广泛的被应用到历史,政治,科学,经济,商业甚至渗透到我们生活的方方面面中,获取的渠道也越来越便利。通过本系列的前面几篇文章,我们已经了解了数据可视化的必要性,而目前市面上也已经具备了非常多成熟的BI绘制工具,如画面,QlikView的的和魔镜等等。虽然这些工具正在变得越来越自动化,然而,随着大数据时代的来临,信息每天都在以爆炸式的速度增长,其复杂性也越来越高;其次,随着越来越多科学可视化的需求产生,地图,3D物理结构等技术将会被更加广泛的使用。所以,当人类的认知能力越发受到传统可视化形式的限制时,隐藏在大数据背后的价值就难以发挥出来,如果因为展示形式的限制导致数据的可读性和及时性降低,从而影响用户的理解和决策的快速实施,那么,数据可视化将失 其价值。

然而,所幸的是,技术的快速发展和不断变化的认知框架正在为人类打开新的视野,促使艺术与技术相结合而产生新型的数据可视化形式。

日历

链接

个人资料

蓝蓝设计的小编 http://www.lanlanwork.com

存档