首页

数据可视化设计必修课(一):图表篇

周周


图表是数据可视化中最常用的一种表现形式,一定要吃透它。

随着互联网数字化越来越完善,数据可视化这个词的使用频率也越来越高,而图表是数据可视化中最常用的一种表现形式。无论是工作汇报还是后台设计,都离不开图表的使用。然而关于图表类相关的资料太零碎了,不成体系,对于初学者非常不友好,本篇文章我从图表的祖辈开始,把它都给挖了出来,希望对你有帮助。

什么是图表

图表的定义:可直观展示统计信息的属性,对知识挖掘和信息直观生动感受起关键作用的图形结构,是一种很好的将对象属性数据直观、形象地可视化的手段。

英文叫法:Chart。

用户对图形的敏感程度远远大于文字,所以产品就需要把数据信息可视化,用简单的图形表示出更多的信息量,而图表是数据可视化中最常用的表现形式。

接下来我们来介绍图表的具体构成及元素解析。

图表的构成

图表是由:标题、图例、刻度轴、数据展示、网格线、提示信息、水位线、时间轴组成,每一个元素都有它存在的意义。在实际使用中不一定非得把元素全部展示出来,精简化显示想要展示的内容即可。

数据可视化设计必修课(一):图表篇

图表元素解析

1. 标题

顾名思义,标题就是图表的名字,标题是必不可少的元素。标题的内容一定要言简意赅,不要太长,能两个字写清楚绝对不用三个字。

标题的常用位置有 3 个:左上角、顶部居中、底部居中。

数据可视化设计必修课(一):图表篇

一般情况下,标题字号 / 色值要突出一些,用户第一眼看到 chart 的时候,要清晰的看到这个图表是做什么的。

特殊情况下,如果需要对标题有额外解释的话,两种展现形式:

  • 增加提示图标;
  • 增加提示语。

数据可视化设计必修课(一):图表篇

2. 图例

图例的组成

颜色、名称、数值、单位。

数据可视化设计必修课(一):图表篇

图例的展现形式

圆形、开关、矩形、鼓包线、实线、虚线。

数据可视化设计必修课(一):图表篇

图例的位置

从左至右、从上至下。

数据可视化设计必修课(一):图表篇

图例的作用

  • 标识出每个颜色所代表的的类别;
  • 开启 / 隐藏数据显示;
  • 图例显示的数值一般为当前值。

图例的颜色选择

同一组图例中,不要出现相近的颜色,否则在图表显示中分不清彼此。

数据可视化设计必修课(一):图表篇

产品使用中,要规范图例颜色使用,一般分为两种:

  • 常用的图例颜色(颜色本身代表着行业中的某种含义),此类颜色需要是固定色值,无论哪个 chart 中,都是这个颜色;
  • 无特殊含义的图例,可以规范出一个图例颜色的使用顺序表。那些无特殊含义的 chart 可以按顺序使用图例颜色,图例整齐划一。

图例过多时如何展示

  • 如果图例可整合前提下,展示主要图例 / top n 图例,其他的图例做整合,增加个详情页来展示完整的;
  • 如果图例不可整合/省略,则需要给出足够的展示空间。

共用图例

如果多个 chart 的图例一样,可进行合并,减少冗余图例。

数据可视化设计必修课(一):图表篇

图例省略

如果 chart 中只有一个图例的话,可省略。

数据可视化设计必修课(一):图表篇

图例名称限制

根据不同使用场景,为了更好的展示效果,要给图例名称设置一个最大值,超过最大值后省略展示。

数据可视化设计必修课(一):图表篇

3. 坐标轴

坐标轴分为 X 轴和 Y 轴,常规情况下为 1 个 X 轴+1 个 Y 轴。不过特殊情况下也会用到 2X+Y 或 X+2Y。

数据可视化设计必修课(一):图表篇

刻度值代表的意义

  • 时间点:12:00;
  • 时间段:周一、周二。

数据可视化设计必修课(一):图表篇

坐标轴使用规则

是否带单位:

  • 如果刻度值的含义明确的情况下,可以不用带单位,比如:2018、2019、2020…;
  • 如果刻度值含义有歧义的情况下,必须加上单位(具体是统一一个位置加单位,还是每个刻度值上加单位,则需要根据场景来判断)。

数据可视化设计必修课(一):图表篇

对齐方式(常用,但非必须):

  • X 轴:居中对齐;
  • Y 轴:右对齐。

数据可视化设计必修课(一):图表篇

刻度值过多时如何显示:

  • 可选择规律性省略刻度名称;
  • 倾斜文字以显示更多的文案

数据可视化设计必修课(一):图表篇

刻度值的选用一定要是同一个规律,禁止同距离的刻度值代表不同数据。

刻度点的样式使用规则:

刻度的线朝外。

数据可视化设计必修课(一):图表篇

4. 数据展示

数据的展示是 chart 中最为明显的地方,可以说如果只显示一个元素的话,就是他了。

数据展示的使用规则:

  • 边界要清晰,不可虚化;
  • 多个数据同时显示的时候,要保证每个数据都能清晰的看到,可以采用透明度来保证所有数据的显示。

5. 网格线

网格线的作用

呼应坐标轴,美观度。

网格线的使用规则

  • 线的颜色要弱化,不要喧宾夺主;

数据可视化设计必修课(一):图表篇

网格线使用实线居多,尽量不用虚线。

使用场景

横、纵、横纵结合、无网格线。

数据可视化设计必修课(一):图表篇

6. 提示信息

通常情况下,提示信息用来标识出 chart 中重要点的数据信息,需要注意的是:重要信息尽量简化,信息量不要太大,言简意赅就好。

数据可视化设计必修课(一):图表篇

7. 水位线

根据不同产品的使用场景,有的时候会用到阈值,当达到某个阈值后,就会触发某种联动。这个时候就需要有个水位线了,它起到警示的作用。

形式有两种,实线和虚线,颜色的选取则取决于产品的警告级别。

水位线可以是一个,也可以是多个,视情况而定。

8. 时间轴

时间轴可以灵活地调节刻度值的上下限,从而更精确的看到自己想看的数据。

时间轴的功能及限制没有不是很复杂,所以就不过多解释了,需要用的话就用。

图表使用建议

1. 折线图 line

定义

折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。折线图是通过线条的波动来表示数据的波动,主要体现的是数据随着时间的推移而变动的图表。

数据可视化设计必修课(一):图表篇

使用场景

常用于观察一段时间内数据波动的浮动变化,比如:一天内内存的使用情况。

使用建议

Y 轴刻度值选择要合理,当前显示的数据波动要最大化的显示;

数据可视化设计必修课(一):图表篇

重要节点可以单独做重点标注;

数据可视化设计必修课(一):图表篇

数据拐点要平滑,不要太锋利。

2. 面积图 area

定义

面积图和折线图比较类似,区别在于面积图把数据区域做了个面积划分,让数据的显示更加清晰。

数据可视化设计必修课(一):图表篇

使用场景

面积图展示尽量不要超过 3 个图例,否则数据多的情况下,数据的展示会特别乱,影响观看。

使用建议

面积区域要和折线的颜色用统一色系,不要换色系;

数据可视化设计必修课(一):图表篇

面积区域一般要比折线颜色浅一些,这样视觉上更加让人舒适;

数据可视化设计必修课(一):图表篇

如果多条数据情况下也用面积图的话,面积区域尽量使用透明度,否则有的数据会被遮挡看不到。

数据可视化设计必修课(一):图表篇

3. 柱状图 bar

 定义

柱形图,又称长条图、柱状统计图。用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析。

数据可视化设计必修课(一):图表篇

使用场景

  • 柱状图分为横向和纵向两种展现形式;
  • 用于在同一维度下不同数据的对比,用柱状图更能清晰的对比出数据的差异化。

使用建议

柱状图的厚度不要是固定值,要做成自适应来应对不同尺寸的分辨率显示;

数据可视化设计必修课(一):图表篇

厚度与间距的对比要合理设计;

数据可视化设计必修课(一):图表篇

可使用小圆角,千万不要用大圆角,太丑了……

数据可视化设计必修课(一):图表篇

如果想要强调某个柱子的话,可以进行颜色区分,但是柱子颜色不要超过 2 个(同一维度下);

数据可视化设计必修课(一):图表篇

如果想要在柱子上显示数值的话,使用建议(下面的顺序为推荐顺序):

  • hover 的时候出现数值;
  • 数值默认在柱子上显示;
  • 数值在柱子顶部 / 右侧显示。

4. 饼图 pie

定义

饼图仅排列在工作表的一列或一行中的数据,它是有一个总和数据,方面查看每个类别分别占总数据的百分比的一种图表。

数据可视化设计必修课(一):图表篇

使用场景

  • 常用于做总结、年度汇报等;
  • 所有数据相加必须是 100% 才可用。

使用建议

  • 每个数据要使用单独的颜色来表示,不要有相同颜色;
  • 饼图中不能有负值;
  • 图例数量没有限制,但是如果遇到可以合并的图例,可以进行合并;
  • 饼图的开始点为 0/12 点位置。

数据可视化设计必修课(一):图表篇

5. 环形图

定义

环形图是由两个不同大小的圆叠在一起,切割中心部分得到的一种图形。

数据可视化设计必修课(一):图表篇

使用场景

  • 环形图有一个独有的特点,就是可以在中心圆的位置突出某一项指标的数值。
  • 它常用于做数据的监控,监控某一类指标是否正常。

使用建议

  • 环形图的开始点为 0/12 点位置;
  • 环的粗细要合理,不要太粗和太细;

数据可视化设计必修课(一):图表篇

环形图的两个圆要从中心对齐。

数据可视化设计必修课(一):图表篇

6. 堆叠面积图

定义

堆叠面积图是把数据面积按顺序逐步堆叠起来的一种图形。

数据可视化设计必修课(一):图表篇

使用场景

常用于不同资源中流量 / 容量的使用。

使用建议

  • 不要有重复的颜色;
  • 尽可能的把数据量按大小的顺序,由下至上的堆叠。

7. 堆叠柱状图

定义

堆叠柱状图是把数据柱状图按顺序逐步堆叠起来的一种图形。

数据可视化设计必修课(一):图表篇

使用场景

常用于不同维度下相同几个指标的展示。

使用建议

  • 不要有重复的颜色;
  • 按重要等级由下至上排序。

8. 非常用图表

上面介绍了常用的图表的使用建议,但是图表类型远远不止于此,还有很多非常用的图表类型,这次我先给大家列出来,如果大家感兴趣的话,我后面再写一期冷门图表的使用建议:

雷达图,散点图,K 线图,盒须图,热力图,旭日图,桑基图,树图,漏斗图,仪表盘。

数据可视化设计必修课(一):图表篇

常用的图表开源网站

1. echartsecharts

网站链接:https://echarts.apache.org/zh/index.html

数据可视化设计必修课(一):图表篇

2. highcharts

网站链接:https://www.highcharts.com.cn/

数据可视化设计必修课(一):图表篇

3. antv

网站链接:https://antv-g2.gitee.io/zh/examples/gallery

数据可视化设计必修课(一):图表篇

总结

Chart 是数据可视化必修课中最重要的模块之一,不可忽略。只有了解每个 chart 的定义及使用场景,才能在产品中用到最合适的那一个。



文章来源:优设网    作者:Luck gg


蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、 网站建设 平面设计服务



什么是数据可视化

鹤鹤

什么是数据可视化:概述


什么是数据可视化?

数据可视化即数据的图形表示,旨在以更易于掌握和理解的有效方式传达大量海量数据。从某种意义上说,数据可视化是原始数据和图形元素之间的映射,它决定了这些元素的属性如何变化。可视化通常是通过使用图表,折线或点,条形图和地图来进行的。

  • Data Viz是描述性统计的一个分支,但它需要设计,计算机和统计技能。

  • 美学和功能齐头并进,以直观的方式传达复杂的统计信息。

  • Data Viz工具和技术对于做出以数据为依据的决策至关重要。

  • 在形式和功能之间取得了很好的平衡。

  • 每个STEM领域都将从了解数据中受益。


Jorge Rey的化石燃料Dataviz 

它是如何工作的?

如果我们能看到它,我们的大脑就可以内在化并对其进行反思。这就是为什么理解图表和查看趋势比阅读大量的文档要花费大量时间和精力进行合理化更容易和有效的原因。我们不想重复人类是视觉生物的陈词滥调,但这是事实,可视化更加有效和全面。

在某种程度上,我们可以说数据Viz是讲故事的一种形式,目的是帮助我们根据数据做出决策。这些数据可能包括:

  • 追踪销售

  • 识别趋势

  • 识别变化

  • 监控目标

  • 监测结果

  • 合并数据

秘密7 –塞尔吉奥·费尔南德斯(Sergio Fernandez)提出离婚可视化的理由 

什么时候使用?

数据可视化对于每天处理大量数据的公司很有用。必须立即显示您的数据和趋势。胜过浏览庞大的电子表格。当趋势立即脱颖而出时,这也可以帮助您的客户或观看者理解它们,而不会迷失在混乱的数字中。

话虽如此,Data Viz适用于:

  • 年度报告

  • 简报

  • 社交媒体微叙事

  • 信息手册

  • 研究

  • 趋势贩运

  • SciViz

  • 烛台图,用于财务分析

  • 确定路线

可以看到数据可视化的常见情况是在销售和营销,医疗保健,科学,金融,政治和物流中。


娜塔莉·祖伊娃(Natalie Zuieva)的租金和薪金统计信息图 

为什么要使用它?

简短的答案:决策。数据可视化具有快速识别模式和解释数据的不可否认的好处。更具体地说,它是确定以下情况的宝贵工具。

  • 识别变量关系之间的相关性。

  • 获得有关受众行为的市场见解。

  • 确定价值与风险指标。

  • 随时间监视趋势。

  • 通过频率检查速率和潜力。

  • 应对变化的能力。


太空垃圾-BBC科学焦点,作者:Federica Fragapane

数据可视化类型

您可能已经猜到了,Data Viz不仅仅是简单的饼图和图形,而且还具有视觉吸引力。该分支用于可视化统计信息的方法包括一系列有效类型。

地图

地图可视化是一种很好的方法,可以分析和显示与地理位置相关的信息,并通过地图准确地将其呈现出来。这种直观的方法旨在按区域分布数据。由于地图可以是2D或3D(静态或动态),因此可以使用多种组合来创建Data Viz地图。

COVID-19支出数据可视化POGO,George Railean

但是,最常见的是:

  • 区域地图:显示国家,城市或地区的经典地图。对于每个区域中的不同特征,它们通常以不同的颜色表示数据。

  • 线图:它们通常包含空间和时间,由于对特定场景进行了分析,因此通常是路线选择的理想选择,尤其是该地区的驾车或出租车路线。

  • 点地图:这些地图分发地理信息的数据。它们是企业确定区域中建筑物确切位置的理想选择。

  • 热图:它们根据特定属性指示地理区域的权重。例如,热图可以按区域分布感染者的饱和度。

图表

图表以图形,图表和表格的形式显示数据。由于图形确实是图表的子类别,因此它们经常与图形混淆。但是,两者之间的差别很小:图形显示数据组之间的数学关系,并且仅是表示数据的统计图方法之一。

图表数据可视化,作者:Madeline VanRemmen

顺便说一句,让我们谈谈数据可视化中最基本的图表类型。


条状图

他们使用一系列的条形图来说明数据。它们是较轻量数据的理想选择,并遵循不超过三个变量的趋势,否则,条形变得混乱且难以理解。


饼状图

这些熟悉的圆形图按部分划分数据。切片越大,部分越大。它们非常适合描述整体的各个部分,它们的总和必须始终为100%。当您需要显示一段时间内的数据发展或缺少任何部分的价值时,请避免使用饼图。甜甜圈图与饼图具有相同的用途。


线形图

他们使用一条线或多条线来显示随着时间的发展。它允许同时跟踪多个变量。一个很好的例子是跟踪品牌多年来的产品销售情况。面积图与折线图具有相同的用途。


散点图

这些图表使您可以通过数据可视化查看模式。它们有两个不同值的x轴和y轴。例如,如果您的x轴包含有关汽车价格的信息,而y轴包含有关薪水的信息,则正向或负向关系将告诉您某人的汽车所反映的薪水。


表格

与我们刚刚讨论过的图表不同,表格几乎以原始格式显示数据。当您的数据难以以视觉方式呈现,并且旨在显示应该阅读而不是可视化的特定数值数据时,它们是理想的选择。

数据可视化| Aishwarya Anand Singh的养蜂与否 


例如,图表非常适合显示特定区域内一段时间内特定疾病的数据,但是当您还需要了解具体原因(例如原因,结果,复发,治疗时间和治疗方法)时,最好使用表格。


数据可视化与信息图表

5个主要差异

它们并没有什么不同,因为它们在视觉上都代表数据。通常,您搜索信息图表并找到标题为“数据可视化”的图像,反之亦然。但是,在许多情况下,这些标题都不会引起误解。这是为什么?

  1. 数据可视化仅由一个元素组成。它可以是地图,图表或表格。另一方面,信息图表通常包含多个Data Viz元素。

  2. 与可能简单或极其复杂且繁重的数据可视化不同,信息图表简单易行,并且面向更广泛的受众。即使对于信息图表代表的研究领域之外的人,后者通常也是可以理解的。

  3. 有趣的是,数据Viz不提供叙述和结论,而是提供这些叙述和结论的工具和基础。虽然信息图表在大多数情况下提供了故事和叙述。例如,数据可视化地图的标题可能是“按区域划分的空气污染饱和度”,而带有相同数据的信息图则显示为“ A区和B区在C国污染最严重”。

  4. 数据可视化可以在Excel中进行,也可以使用其他自动生成设计的工具,除非将其设置为演示或发布。但是,信息图表的美学非常重要,其设计必须吸引更广泛的受众。

  5. 在交互方面,数据可视化通常提供交互式图表,尤其是在线形式的图表。另一方面,信息图表很少互动,通常是静态图像。

Skype通过可视化.com进行可视化


如何创建有效的数据可视化?

5有用的技巧

该过程自然类似于创建信息图表,并且围绕了解您的数据和受众。更准确地说,这些是准备有效的数据可视化以使您的查看者立即了解的主要步骤和最佳实践。

1.做功课

准备工作已经完成了一半。在甚至开始可视化数据之前,必须确保您了解该数据的最后细节。

不可否认的是,了解您的数据查看对象是另一个重要部分,因为不同的人对信息的处理方式不同。您要为数据可视化的对象是谁?他们如何处理视觉数据?只需给他们一张饼图就足够了,否则您将需要更深入的可视化报告?

您正在可视化什么样的信息,它能反映出您的目标吗?

最后,考虑要使用多少数据并加以考虑。

图片来自Brodie Vissers

2.选择正确的图表类型

在上一节中,我们列出了可在数据可视化中使用的基本图表类型。要确定最适合您工作的人,需要考虑的因素很少。

  • 图表中将有多少个变量?

  • 您将为每个变量放置几项?

  • 值之间的关系是什么(时间段,比较,分布等)

话虽如此,如果您需要展示整个项目的各个部分,那么饼图将是理想的选择。例如,您可以使用它来展示特定产品的市场份额的百分比。但是,饼图不适用于时间范围内的分布,比较和跟踪趋势。在这些情况下,条形图,散点图,s和折线图更为有效。

另一个示例是如何在图表中使用时间。使用水平轴会更准确,因为时间应该从左到右。它在视觉上更直观。

Oberhaeuser的MagnaGlobal广告市场海报 

3.对数据进行排序

首先删除所有不会增加价值并且基本上是图表多余的数据。有时,您必须处理大量数据,这不可避免地会使您的图表变得非常复杂且难以阅读。不要犹豫,将您的信息分成两个或多个图表。如果这对您不起作用,则可以使用突出显示或使用更合适的内容更改整个图表类型。

提示:使用条形图和柱形图进行比较时,请按值(而不是字母顺序)以升序或降序对信息进行排序。

图片由萨曼莎·赫尔利(Samantha Hurley) 


4.利用颜色发挥自己的优势

在每种可视化形式中,颜色都是您最好的朋友和最强大的工具。它们产生对比,重音,强调并直观地引导眼睛。即使在这里,色彩理论也很重要。

设计图表时,请确保不要使用超过5或6种颜色。除此之外,任何其他操作都将使您的图表不堪重负,并且难以为观众阅读。但是,您可以使用颜色强度来发挥自己的优势。例如,当您在不同的时间段内比较同一概念时,可以将数据从所选颜色的最浅阴影到其较深的颜色进行排序。它会创建适合您时间线的强烈视觉效果。

选择颜色时要考虑的事项:

  • 不同类别的颜色不同。

  • 系列中所有图表的采用一致调色板,方便以后将进行比较。

  • 最好使用对色盲友好的调色板。

Jamie Kettle可视化塑料废物污染数据 

5.获取灵感

当您想成为数据可视化设计中的佼佼者时,请多多发挥自己的灵感。查看优秀的示例、信息图、其他人的工作,并了解哪种方法最适合您需要实现的每种数据。

下图这个Twitter帐户数据可视化是一个很好的例子。同时,我们还将精选一些令人称赞的示例,这些示例将使您有信心开始为数据创建视觉效果。

lilit Hayrapetyan创作的大数据纪录片的人脸 

8个数据可视化示例

作为另一种艺术形式,Data Viz为一些令人惊叹的精心设计的图表提供了沃土,这些图表证明了数据也可以是美丽的。现在,让我们来看看一些例子。

1.黑暗之魂III体验数据

我们从孟小伟的个人项目开始,介绍他玩《黑暗之魂3》的经验。这是信息图表和数据可视化也是个人设计工具的完美例子。这项研究非常庞大,但非常专业地归类为针对不同概念的不同类型的图表。所有数据可视化都使用相同的调色板进行制作,并且在信息图表中看起来很棒。

我的黑暗之魂3孟小伟在播放数据 

2.有史以来最伟大的电影

凯蒂·西尔弗(Katie Silver)根据评论家和观众的评论汇总了有史以来最伟大的100部电影。可视化显示了每部电影的关键数据点,例如发行年份、奥斯卡提名和获胜、预算、利润、IMDB得分、类型、拍摄地点、电影背景和制作工作室。所有电影均按发行日期排序。

凯蒂·西尔弗(Katie Silver)的100部最佳电影数据可视化 

3.最暴力的城市

费德里卡·弗拉加帕内(Federica Fragapane)显示了2017年全球50个最暴力城市的数据。这些项目根据人口在垂直轴上排列,并根据凶杀率在水平轴上排序。

4.家族企业作为数据

这些数据可视化和插图由Valerio Pellegrini为《透视》杂志制作。它们显示了一个饼图,其中包含行业细分以及对就业贡献的散点图。


视角杂志–家族企业by Valerio Pellegrini 

5.太阳系的轨道图

该地图显示了太阳系中18000多个小行星的轨道数据。每个小行星都显示在1999年除夕的位置,并按小行星的类型进行了着色。

埃莉诺·卢兹(Eleanor Lutz)的太阳系轨道图 

6.标题的语义

KatjaFlükiger对头条新闻的故事情有独钟。数据可视化旨在传达销售对算术的影响程度。该项目在马里兰大学艺术学院完成,目的是可视化对移民的引用,并对用词选择和上下文所暗含的价值判断进行颜色编码。

标题语义学KatjaFlükiger 

7.月球和地震

该数据可视化用于回答月球是否引起地震。该图显示了根据月球的相位和轨道位置而发生的地震的时间和强度。

月亮与地震艾西瓦娅·阿南德·辛格(Aishwarya Anand Singh) 

8. Nanosats的黎明

可视化效果显示了从2003年到2015年发射的卫星。该图表示了专注于项目的机构类型以及为其提供资金的国家。左侧显示了每年的发射次数和卫星应用次数。

有线英国–由Nanosats拍摄的黎明(Valerio Pellegrini) 

最后的话

数据可视化不仅是一种科学形式,而且还是一种艺术形式。其目的是帮助任何领域的企业快速理解复杂数据,并开始根据该数据做出决策。为了使您的图表高效且易于阅读,这一切都与了解您的数据和受众有关。这样,您就可以选择正确的图表类型,并使用可视化技术来发挥自己的优势。


文章来源:站酷  作者:ZZiUP

蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、 网站建设 平面设计服务


数据之美:地理空间数据可视化

周周


地理空间数据可视化 (Geo Spatial Data Visualization) 是近年来兴起的一个热门领域,越来越多的政府、企业青睐于通过这种强视觉的形式来展示政绩与实力。市场需求的增长也吸引了越来越多的设计师投身于这个领域。而在这样一个细分领域,也对设计师的能力提出了全新的要求。在该领域,我们团队沉淀出一套固定且可复用的设计模式。





文章来源:tob.design     作者:三鱼先生



蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、 网站建设 平面设计服务



数据可视化10大案例分析

鹤鹤

数据可视化实践案例帮助你思考在执行可视化设计时需要注意哪些方面以及如何让你的用户理解可视化图形。


数据可视化一直处于大热的状态,已成为互联网产品的基本配置。它用于各种行业,从商业智能到信息传达,帮助用户更好的理解数据背后的故事。


我们的大脑善于处理可视化信息,这使我们更容易理解图表或图形中可视化的数据,而不是表格和电子表格中列出的数据。一个伟大的数据可视化应该利用人类视觉系统的优势来呈现数据,以便数据被吸收和理解。它应该考虑用户对视觉处理的了解,提高并简化用户的数据体验。


目前有很多工具和框架可用于构建数据可视化图形,今天我们一起回归可视化设计的基础,了解是什么让数据可视化有效?在设计数据时我们应该遵循哪些指导原则?


以下 10 个要点和实践案例将帮助你进行思考,完成丰富、有洞察力的数据体验。


PART 01

为特定受众设计


可视化以视觉表现形式,将信息以概要形式抽提出来,提供上下文并描述数据中的关系。虽然设计师对给定的一组数据集中的模式和关系没有任何影响,但他可以根据用户的需求选择显示哪些数据以及提供怎样的语境。毕竟,就像其他产品一样,如果用户无法使用它,那么可视化就毫无意义。


为新手用户设计的可视化产品应该是结构化的、明确的和有吸引力的。他们应该用文字直接说明受众应该从数据中得到什么。

转换双亲的工作时间:妈妈 VS 爸爸



另一方面,面向专家用户的可视化产品可以显示更精细的数据视图,以驱动用户探索和发现。细节和数据密度应该简单明了。

工作来来往往:国民失业情况




PART 02

使用交互促进探索

(但不要依赖)


《纽约时报》网站上只有 10 - 15% 参与可视化交互的用户实际点击了按钮。《纽约时报》的图形团队制作了一些业内最好的可视化作品,但几乎没有人与这些作品互动。


这表明,在可视化设计中,我们不能依赖交互操作帮助用户建立理解。关键数据不能隐藏在交互操作后面,而应该明确的展示在图表中。


然而,怎样在可视化中融入交互比较好呢?


设计师应该允许在图表中整合更多数据(排除非关键数据),允许感兴趣的用户更深入地研究数据集。


Nathan Yau 的流动数据是在可视化中合理应用交互操作的知名案例,在可视化行业中广泛应用。下图是他在关于死亡原因和预期寿命的图表应用交互操作的案例,顶部 tab 可以切换数据展示维度,点击曲线,可以看到对应的数据。


2005 年至 2014 年的死亡率数据:死因如何因性别和种族而异

来源:https://flowingdata.com/2016/01/05/causes-of-death/


或者,交互可以用作吸引点,让你的用户在浏览图表之前,就亲自参与该项目。看看 Quartz 这款有趣的书写和文化作品。这件作品首先要求读者在文化形态的分析概述之前,简单地绘制一个圆圈 ,这个圆圈展示了有效的可视化的特征。


画圆圈的方式说了很多关于你的故事



同样, The Pudding 最近发布了一个交互式可视化软件,向读者讲述有关生日悖论的知识(生日悖论,指如果一个房间里有 23 个或 23 个以上的人,那么至少有两个人的生日相同的概率要大于 50% )。虽然大多数非统计学家可能会发现生日悖论,这是概率论中的一个标准问题,非常枯燥且不直观,但这种可视化使得它看起来有趣且易于理解。创作者融入最近的用户互动的方式使得整个体验非常具有关联性。


生日悖论实验



这两个在可视化产品中融入交互操作的案例都很成功,因为它们使用交互带读者参与数据研究。


PART 03

利用视觉突出性聚焦并引导体验


视觉突出性,使视觉元素从周围环境凸显的特性,是数据可视化的强大工具。它可以用于引导用户注意可视化中最重要的信息,以帮助防止信息过载。通过使用视觉突出一些细节并压制其他细节,可以使我们的设计更清晰,更容易理解。


一些视觉变量 —— 颜色和大小 —— 是我们创造和控制视觉显著性的关键。


色彩方案是数据可视化设计的关键因素。众所周知,色彩特别易于视觉识别。我们可以使用温暖,高饱和度的颜色来突出关键数据点,并应用冷色调,使用低饱和度的颜色将不太重要的信息放到背景中。

2014:最热的年份



尺寸也非常易于营造视觉突出性。较大的元素比较小的元素更有吸引力,因此要扩大您希望用户首先阅读的元素,并缩小不太相关的文本和元素。


PART 04

使用位置和长度表达定量信息

使用颜色表达分类信息


Cleveland 和 McGill 在信息可视化方面的著名研究 —— 视觉编码的有效性(即数据维度与视觉属性的映射)。他们根据人们对视觉编码的准确感知程度,对不同类型的视觉编码的识别程度进行了排序,给出了以下(简化的)列表:

  1.位置

  2.长度

  3.角度

  4.区域

  5.颜色


这对数据可视化设计的意义在于,我们显示定量信息的首选应该是按位置进行编码(如经典散点图和条形图所示)。与基于角度(如饼图)或基于区域(如气泡图)的编码相比,基于位置的编码有助于用户在更短的时间内进行更准确的比较。


然而,这并不是说所有可视化都必须是条形图或散点图。在研究可视化数据的新方法时,牢记这些原则是个好主意。


我真正想要强调的是,颜色不应该用于编码定量信息,而是应该用来编码分类信息。也就是说,我们可以使用颜色来表示属于不同类别的数据。


出生时的预期寿命



PART 05

消除图表视觉上的混乱


无论你是否支持 Edward Tufte 在设计中使用极简主义的极端方法,都需要不断思考,如何消除图表视觉上的混乱。通过在数据元素和非数据元素之间创建可视化对比,来让您的数据大放异彩,就像 Nadieh Bremer 在他的获奖作品“美国出生时间”中所做的那样。

婴儿潮:白天工作时间出生高峰期



删除不起任何作用的结构元素使数据清晰(如背景、线条和边框)。减弱必要的结构元素(如轴、网格和刻度线),否则这些元素会与数据争夺注意力。(网格为浅灰色,最宽设为 0.5 pt,轴为黑色或灰色,最宽设为 1 pt )


PART 06

合理使用图例


图表中的每个数据都使用图例标注,以便读者理解它所代表的内容,这样的设计对吗?


错。太多设计师依靠图例来告诉用户哪些符号或颜色代表图表中的哪些数据。列举图例虽然对设计师来说很容易,但对读者来说却很难。它们迫使读者在图例和数据之间来回扫描,给读者的记忆带来不必要的压力。


更好的方法是直接在图表上标记数据。作为设计师,你的工作就是完善体验,便于用户阅读。在下面的例子中,Nathan Yau 进行了去除图例的设计,创建了一个带有大量直接标签的小型交互式多重显示。

每人每日平均消费量




PART 07 

使用消息传递和视觉层级创建叙事流程


最好的可视化讲述着引人入胜的故事。这些故事通过图表中的趋势、相关性或异常值展示,图表数据周围的元素可以进一步丰富故事内容。这些故事将原始数据转化为有用的信息。

 

从表面上看,似乎数据可视化完全与数字相关,但一个伟大的数据故事是无法用语言来讲述的。信息传递清晰的视觉层次,才能一步一步地引导读者阅读数据。


例如,可视化的标题,应该明确阐明一个关键观点,使读者领会。分散在数据中的微小注释,可以通过异常值或趋势引起读者注意,从而为关键观点提供支撑。    



我在这里要说的是:帮助用户,确切地告诉他们在数据中寻找什么!


PART 08 

使用图形元素丰富图表信息


正如上一条建议提到的,我们可以在可视化中使用注释来丰富数据故事。有时可以添加图形元素来使这些注释更有意义,以便将这些信息更直接地关联到我们的数据。


以这张来自 Susie Lu 的图片为例。“夏季大片”和“奥斯卡季”的数据重叠赋予了原本看似随机的高峰和低谷以意义。它们帮助观众理解数据的重要性,比单独使用字幕或注释更直接。

2015 - 2017.08 票房趋势:强大的开场和后期的爆发



PART 09

为移动体验而设计


静态可视化通常以 JPG 和 PNG 等位图图像格式发布,这对移动端用户来说是一个明显的挑战。许多数据可视化的美妙之处在于它们的视觉细节 —— 微小的数据点和微妙的编码 —— 而这些细节许多在静态格式的小屏幕上被丢失了。


例如:Accurat 工作室在诺贝尔奖上的精美复杂的作品,在印刷和高分辨率视网膜显示器上看起来非常棒的全尺寸,却在移动设备上几乎难以辨认。

视觉数据



为移动体验设计,使用像 D3.js 或 Highcharts 这样的 JavaScript 可视化库构建响应式可视化,尝试为印刷、桌面和移动设备多种载体创建相同的静态可视化设计。


PART 10

平衡复杂性与清晰度以促进理解


今天谈到的所有最佳实践可以归结为一件事:在复杂性和清晰度之间找到合适的平衡,以满足受众的需求。


制作精美的、探索性的可视化细节总是诱人的,但这不一定是最合适的方法。在设计图形时要考虑周到 ,让读者的知识和目标决定应该包含哪些数据以及包含多少数据,并整理数据以讲述想要讲述的故事。

文章来源:站酷  作者:TCC设计情报局

蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、 网站建设 平面设计服务

智慧路网云控平台

前端达人

收藏


收藏


转自:站酷

作者:汪东东


蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、 网站建设 平面设计服务

智慧工地可视化

前端达人

这是一款智慧工地云平台,运用5G通讯技术,结合PC端和APP端,规范工地管理提高安全质量的检查整改效率和流程将整个工地纳入监控范围,扬尘监测、大型设备监测、材料进场管理、车辆出入监控,了解实时动态等信息;人员信息实名制录入管理,进场人脸考勤识别打卡,可一键上传考勤薪资数据至住建局,接受政府单位监督;提升管理人员对工地的多维度把控和管理效率。

2021~继续前行

收藏
收藏
收藏
收藏
收藏
收藏
收藏
收藏
收藏



转自:站酷

作者:爱吃草莓的丫丫


蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、 网站建设 平面设计服务

初识数据可视化—图表(基础篇)

周周

在B端设计中,数据可视化是必不可少而且非常重要,越来越多的设计师需要和数据打交道,但是很多设计师不懂可视化当中不同用途的图表规范,只是单纯设计出好看的数据图表,却不能给用户带来更多的信息和价值。

因此掌握数据可视化能力是设计师必不可少的一个技能,然而目前国内互联网对于数据的教学不够全面,这让很多B端的设计师很苦恼,所以今天我结合自己的工作经验和大家分享一下--“数据可视化之图表设计”,为大家梳理一套完整的数据可视化的框架,以及关于可视化设计的基本准则和规范。帮助大家理解什么样的数据对应什么样的图标,了解颜色的意义,知道数据排版的要点。

一、基础概念

将不可见的数据转化为可见的图形和符号,从中发现规律和特征,以获取更多的信息和价值。

在当前互联网的时代下,一页图可能对标一个庞大且复杂的数据表格,按照人类本身对图的记忆远大于对抽象文字的记忆,所以我们要学会让数据说话,数据可视化除了“简洁直观”,还可有容易理解和记忆、传递信息更丰富的特点。



接下来我们开始思考如何制作数据可视化图标?首先规范的流程是最好的前提,下面的工作流程结合我自己的经验和日常企业的数据分析场景,找到了一个合适的参考,我们就可以步步为营,避免很多不必要的返工,保证设计质量和项目进度。

二、选定可视化图标

很多小伙伴在做可视化图表设计过程中,肯定遇到过这样的困扰,发现自己做完的图标并未能准确表达自己的意图,也无法传达自己的意图,图表通常让用户看完困惑不已,主要问题出现在分析的维度没有找准或定义的比较混乱,面对B端庞大复杂的图标,同样的一个指标的数据,我们从不同维度分析就会出现不同结果。用一句古话来形容:横看成岭侧成峰。


国外专家Andrew Abela曾整理了一份图表类型选择指南图示(如下图),他把数据的关系分成了4种类型,帮助我们去选出合适的图表来呈现。

上图向大家展示了数据分析常用的4个维度,我们在选定数据指标后,我们需要和数据产品经理沟通我们核心需求,是我们想通过可视化向用户传递什么价值信息。上图引导我们从“联系、分布、比较、构成”四个维度更有逻辑的思考这个问题,我们在进行图表设计时首先进行需求的分析,熟悉数据并且明确数据要展现出来的信息,然后选用合适的图表来进行数据的展现。

联系:数据之间的相关性

分布:指标里的数据主要集中在什么范围、表现出怎样的规律

比较:数据之间存在何种差异、差异主要体现在哪些方面

构成:指标里的数据都由哪几部分组成、每部分占比如何

考虑到日常企业的数据分析场景,图中有些图表使用频率是非常低的。所以我参考了上图的部分内容,对其进行了总结,重新整合成三个维度

图表的作用,是帮助我们更好地看懂数据。选择什么图表,需要回答的首要问题是『我有什么数据,需要用图表做什么』,而不是 『图表长成什么样』 ,根据数据选用合适的图表展现来把数据的信息传达给用户。因此我们从数据出发、熟悉每种图表的定义、适用场景、优缺点,从功能角度对图表进行分类,这样才能快速选择合适的图表。

2.2.1 比较类图表

(1)柱状图

定义:柱状图是一种以长方形的长度为变量的统计图表。长条图用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析

特点:

1、这个分类不限于地区、品牌等,可以是一个时间周期;

2、数量控制在5-12条最佳;

使用建议:

(1)使用合适的宽度去适配柱条的宽度

当柱子太窄时,用户的视觉可能会集中在两个柱中间的负空间,而这里是不承载任何数据的。宽度推荐使用在1/2 柱宽到 1 柱宽之间,但也要视情况而定。

(2)不推荐采用全圆角

柱形图可以有适当的圆角,全圆角则有可能歪曲可视化图表的表达,用户可能无法明确是圆心还会顶点作为峰值。

(3)不要使用非水平和竖直的文字标注,也不要使用转行

有时坐标轴上的注释文字会很多,所以很多人为了妥协,在小空间内显示出所有的文字标注内容,而使用倾斜的文本,或者将文本转行处理。

不要用过于复杂的设计形式,数据可视化的第一要义是简单易懂,所以在遇到标签文字过长时,可以采用将柱状图转化为条形图

(2)条形图

定义:条形图是用宽度相同的条形的高度或长短来表示数据多少的图形。条形图能够使人们一眼看出各个数据的大小,易于比较数据之间的差别。当条目较多,如大于12条,移动端上的柱状图会显得拥挤不堪,更适合使用条形图。

特点:

1、与柱状图类似,只是交换了X轴与Y轴位置;

2、多用于竖长的显示区域,例如手机端、大屏的一侧;

3、多用于top排行或分类名称较长的情况;

4、数量一般不超过30条,否则易带来视觉和记忆负担

使用建议:

(1)采用有序排列,轴标签右对齐

对多个数据系列排序时,如果不涉及到日期等特定数据,最好能符合一定的逻辑用直观的方式引导用户更好的查看数据。

可以通过升序或降序排布,例如按照数量从多到少来对数据进行排序,也可以按照字母顺序等来排布。总之,按照逻辑排序可以一定程度上引导人们更好地阅读数据。

(2)标签直接显示在柱体上

条形图还可以通过省略横轴和纵轴,并直接在柱子上表明数值,来降低数据墨水比,进一步提高信息的获取效率。

(3)折线图

定义:用于显示数据在一个连续的时间间隔或者时间跨度上的变化,它的特点是反映事物随时间或有序类别而变化的趋势。折线图分为直线折线图和曲线折线图。折线图可以清晰的反映数据是递增还是递减、增减的速率、增减的规律(周期性、螺旋性等)、峰值等特征。

特点:

1、横轴如果不是表示连续数值,折线图的意义不大

2、数量一般不少于3条,否则用柱状图更合适

使用建议:

(1)反映事物随时间或有序类别而变化的趋势

折线图看的是趋势,所有不是有序类别的不适合使用折线图

(2)视觉美化

折线图可以清晰的反映数据是递增还是递减,不能和面积图累计的概念混淆,由于折线图放在界面上的视觉重量很弱,所以我们可以通过添加微渐变加重视觉。

(4)面积图

定义:面积图又叫区域图。它是在折线图的基础之上形成的, 它将折线图中折线与自变量坐标轴之间的区域使用颜色或者纹理填充,颜色的填充可以更好的突出趋势信息,需要注意的是颜色要带有一定的透明度,透明度可以很好地帮助使用者观察不同序列之间的重叠关系,没有透明度的面积会导致不同序列之间相互遮盖,减少可以被观察到的信息。

使用建议:

(1)不要超过7个序列

当数据系列过多时,往往造成用户难以观察的痛苦,所以建议使用堆叠面积图时数据系列最好不要超过7个。

(5)分组条形图

分组条形图属于条形图的一种,又叫簇状条形图,是一种以不同分组高度相同的长方形的宽度为变量的统计图表,每个分组中的柱子使用不同的颜色或者相同颜色不同透明的方式区别各个分类,各个分组之间需要保持间隔。

特点:

(1)适用场景

分组条形图适用于表达相同分类不同组别的数据,或者相同组别不同分类的数据,简而言之,就是根据一个相同变量的不同分组进行数据表达。

(2)不适用场景

分组条形图不适合用于表达分组过多的,数据量较大的数据,也不适合用于表达趋势类的数据。

(6)双向条形图

定义:双向柱状图又叫正负条形图,是使用正向和反向的柱子显示类别之间的数值比较,其中分类轴表示需要对比的分类维度,连续轴代表相应的数值。

(7)玫瑰图

定义:一种圆形直方图,使用半径长短表示数值大小。可以在视觉上夸大数据之间的差异。

特点:

1、由于面积等于半径的平方,玫瑰图会将数值之间的差异放大

2、南丁格尔玫瑰图不能用于表示占比构成

3、数量:一般 不超过30条,否则易带来视觉和记忆负担

(8)雷达图

定义:雷达图又称为蜘蛛网图、网络图,蜘蛛图,星图,是以在同一点开始的轴上显示的三个或更多个变量的二维图表的形式来显示多元数据的方法,所有这些方面都可以类似地量化,常用于排名、评估、评论等数据的展示,比如我们玩王者荣耀中英雄的各项性能指标。

特点:

1、指标得分接近圆心,说明处于较差状态,应分析改进;指标得分接近外变现,说明处于理想状态

2、数量控制在5-8个最佳

(9)子弹图

定义:对比分类数据的数值大小以及是否达标

特点:

1、可以通过标记刻度区间,来进行更好的评估

2、数量控制在10个以内

(10)漏斗图

定义:由多个梯形从上而下叠加而成。从上到下的项有逻辑上的顺序关系,梯形面积表示某个业务量与上一个环节之间的差异,通过漏斗各环节业务数据的比较,能够直观地发现和说明问题所在,为决策者提供一定的参考。

特点:

适用于业务流程比较规范、周期长、环节多的单流程单向分析,不适合表示无逻辑顺序的分类对比

使用建议:

(1)漏斗图不是表示各个分类的占比情况,而是展示数据变化的一个逻辑流程,如果数据是无逻辑顺序的占比比较,建议使用饼图更合适。

(2)可以根据数据选择使用对比色或同一种颜色的色调渐变,从最暗到最浅来依照漏斗的尺寸排列。切记,不要添加许多图层和颜色造成漏斗图难以阅读。


比较类图表总结

2.2.2 构成类图表

(1)饼图

定义:用于表示不同分类的占比情况,通过弧度大小来对比各种分类,将一个圆饼按照分类的占比划分成多个区块,整个圆饼代表数据的总量,每个圆弧所在的块表示该分类占总体的比例大小,所有圆弧所在的块组成的圆饼等于 100%,这样可以很好地帮助用户快速了解数据的占比分配。

特点:

1、可以通过标记刻度区间,来更好的评估

2、数量控制在10个以内

使用建议:

(1)饼图适合用来展示单一维度数据的占比,要求其数值中没有零或负值,并确保各分块占比总和为100%

(2)饼图不适合被用于数据的比较

(2)环图

定义:本质是将饼图中间区域挖空

特点:

(1)饼图的整体性太强,我们会将注意力更多集中在扇形的面积上,环图则可以很好地避免这个问题

(2)建议分类数量不超过9个

使用建议:

饼图更加集中面积,环图会集中在角度和弧长上,所以我们中间的空间利用率还可以更好的利用。

(3)旭日图

定义:旭日图(Sunburst)由多层的环形图组成,在数据结构上,内圈是外圈的父节点。因此,它既能像饼图一样表现局部和整体的占比,又能像矩形树图一样表现层级关系。

特点:

1、旭日图=N张饼图

2、离远心越近,代表层级越高

3、下一层级的总和构成上一层级

4、可以无限向外扩展

(4)堆叠面积图

定义:堆积面积图是一种特殊的面积图,可以用来比较在一个区间内的多个变量。如果有多个数据系列,并想分析每个类别的部分到整体的关系,并展现部分量对于总量的贡献时,使用堆积面积图是非常合适的选择。

特点:

1、适合表达总量和分量的构成情况

2、分类指标的纵轴起点,并不是从0开始,而是在上一个分类基础上叠加

使用建议:

1、图表有重叠的数据时,类别数量越多,重叠越多,因此可见度越低,所以不建议堆叠面积图中包含过多数据系列.

2、堆积面积图要展示部分和整体之间的关系,所以不能用于包含负值的数据的展示。

3、建议堆叠面积图中把变化量较大的数据放在上方,变化量较小的数据放在下方会获得更好的展示效果。

(5)堆叠柱状图

定义:堆叠柱状图是柱状图的扩展,不同的是,柱状图的数据值为并行排列,堆叠柱图则是一个个叠加起来的。它可以展示每一个分类的总量,以及该分类包含的每个小分类的大小及占比,因此非常适合处理部分与整体的关系。

特点:

1、二级分类并不是按照同一基准对齐的

使用建议:

大多数的堆叠柱状图都是垂直绘制的,但是如果你的数据标签特别长时,考虑更好地展示效果,可以选择使用水平堆叠的方式。

(6)瀑布图

定义:通过显示正值(收入)和负值(支出)对总量的贡献来显示结果累积的过程,因为形似瀑布流水而被称之为瀑布图。布图通过巧妙的设置,使图表中数据的排列形状(称为浮动列)看似瀑布悬空,从而反映数据在不同时期或受不同因素影响的程度及结果,还可以直观反映出数据的增减变化,在工作表中非常实用。

特点:

1、过程值为正的时候,向上加;

2、过程值为负的时候,向下减;

构成类图标总结

2.2.3 分布和联系类图表

(1)地图

定义:特殊高亮的形式显示数据集中的区域和数据所在的地理区域的图示。使用地图作为背景,对数据的地理分布显示直观通过颜色深浅、气泡大小等容易判断度量的大小,将数据在不同地理位置上的分布通过颜色或者气泡映射在地图上。

特点:

1、结合散点:位置坐标更清晰

2、结合飞线图:表达起始点和目标点的链接或流向关系

使用建议:

(1)必须要有地理位置

(2)展现的通常是以某个地区为单位的汇总的连续信息

(3)当你用基于地图的热力图的时候,颜色梯度变化一定是有规律的,一定根据数值递增递减来变化的,否则在视觉上产生错误引导

(2)散点图

定义:数据点在直角坐标系平面上的分布图,表示因变量随自变量而变化的大致趋势。

(3)气泡图

定义:气泡图是显示变量之间相关性的一种图表。与散点图类似。在直角坐标系中显示数据的两个变量(X和Y轴)之间的关系,数据显示为点的集合。与散点图不同的是,气泡图是一个多变量图,它增加了第三个数值即气泡大小的变量,在气泡图中,较大的气泡表示较大的值。可以通过气泡的位置分布和大小比例,来分析数据的规律。

特点:

有一定的数据量是展现三个变量之前的相关性,数据具有3个序列、特征及相关值。

举个栗子:

我们回归到线下场景,我们通常在逛生鲜超市类如盒马生鲜、沃尔玛等,会发现里面售卖的鸡蛋、生鲜类会比外面便宜很多,因为他们容易过期,属于成本极高的食品,通过限购来让他们引流,从而吸引更多的顾客来买那些成本低、单品收入高的商品。

三、总结

最后给大家总结一下,首先我们拿到数据后先明确我们的使用目标,是让用户用最短的时间了解到数据带来的信息,结合每个图表的优缺点,选择合适的图表,从需求和目标出发,切忌盲目的增加和删减元素,图表的易用性大于它的美观度。



以上就是本篇文章的全部内容,数据可视化是一门庞大系统的科学,关于可视化相关的知识还有很多没有涉及到,例如可视化图表的构成、图表运用场景、数据可视化大屏等等,后续希望大家持续关注。


文章来源:tob.design     作者:佩奇一只居



蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、 网站建设 平面设计服务

互联网金融数据可视化-图表设计经验总结

前端达人

级。对于数据可视化从开始的小白,基本产品文档什么样画什么样(在此感谢产品同事PRD的规范帮助),到现在积极参与需求确立、从视觉交互层面的讨论到确立方案,与客户端同事沟通实现,最后测试走查,全面介入。学到不少 写一篇总结,愿与各位伙伴共同进步,欢迎大家留言评论❤️


转自:站酷

蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、 网站建设 平面设计服务

初识数据可视化——图表(基础篇)

涛涛

深度挖掘数据可视化图表设计的框架和规范

在B端设计中,数据可视化是必不可少而且非常重要,越来越多的设计师需要和数据打交道,但是很多设计师不懂可视化当中不同用途的图表规范,只是单纯设计出好看的数据图表,却不能给用户带来更多的信息和价值。


因此掌握数据可视化能力是设计师必不可少的一个技能,然而目前国内互联网对于数据的教学不够全面,这让很多B端的设计师很苦恼,所以今天我结合自己的工作经验和大家分享一下--“数据可视化之图表设计”,为大家梳理一套完整的数据可视化的框架,以及关于视化设计基本准则规范。帮助大家理解什么样的数据对应什么样的图标,了解颜色的意义,知道数据排版的要点。


一、基础概念

将不可见的数据转化为可见的图形和符号,从中发现规律和特征,以获取更多的信息和价值。

在当前互联网的时代下,一页图可能对标一个庞大且复杂的数据表格,按照人类本身对图的记忆远大于对抽象文字的记忆,所以我们要学会让数据说话,数据可视化除了“简洁直观”,还可有容易理解和记忆、传递信息更丰富的特点。

接下来我们开始思考如何制作数据可视化图标?首先规范的流程是最好的前提,下面的工作流程结合我自己的经验和日常企业的数据分析场景,找到了一个合适的参考,我们就可以步步为营,避免很多不必要的返工,保证设计质量和项目进度。


二、选定可视化图表

很多小伙伴在做可视化图表设计过程中,肯定遇到过这样的困扰,发现自己做完的图标并未能准确表达自己的意图,也无法传达自己的意图,图表通常让用户看完困惑不已,主要问题出现在分析的维度没有找准或定义的比较混乱,面对B端庞大复杂的图标,同样的一个指标的数据,我们从不同维度分析就会出现不同结果。用一句古话来形容:横看成岭侧成峰。


国外专家Andrew Abela曾整理了一份图表类型选择指南图示,他把数据的关系分成了4种类型,帮助我们去选择合适的图表来呈现,我对其进行了总结并美化(如下图)。

上图向大家展示了数据分析常用的4个维度,我们在选定数据指标后,我们需要和数据产品经理沟通我们核心需求,是我们想通过可视化向用户传递什么价值信息。上图引导我们从“联系、分布、比较、构成”四个维度更有逻辑的思考这个问题,我们在进行图表设计时首先进行需求的分析,熟悉数据并且明确数据要展现出来的信息,然后选用合适的图表来进行数据的展现。

联系:数据之间的相关性

分布:指标里的数据主要集中在什么范围、表现出怎样的规律

比较:数据之间存在何种差异、差异主要体现在哪些方面

构成:指标里的数据都由哪几部分组成、每部分占比如何

考虑到日常企业的数据分析场景,图中有些图表使用频率是非常低的。所以我参考了上图的部分内容,对其进行了总结,重新整合成三个维度

图表的作用,是帮助我们更好地看懂数据。选择什么图表,需要回答的首要问题是『我有什么数据,需要用图表做什么』,而不是 『图表长成什么样』 ,根据数据选用合适的图表展现来把数据的信息传达给用户。因此我们从数据出发、熟悉每种图表的定义、适用场景、优缺点,从功能角度对图表进行分类,这样才能快速选择合适的图表。

2.2.1 比较类图表

(1)柱状图

定义:柱状图是一种以长方形的长度为变量的统计图表。长条图用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析

特点:

1、这个分类不限于地区、品牌等,可以是一个时间周期;

2、数量控制在5-12条最佳;

使用建议:

1、使用合适的宽度去适配柱条的宽度

当柱子太窄时,用户的视觉可能会集中在两个柱中间的负空间,而这里是不承载任何数据的。宽度推荐使用在1/2 柱宽到 1 柱宽之间,但也要视情况而定。

2、不推荐采用全圆角

柱形图可以有适当的圆角,全圆角则有可能歪曲可视化图表的表达,用户可能无法明确是圆心还会顶点作为峰值。

3、不要使用非水平和竖直的文字标注,也不要使用转行

有时坐标轴上的注释文字会很多,所以很多人为了妥协,在小空间内显示出所有的文字标注内容,而使用倾斜的文本,或者将文本转行处理。

不要用过于复杂的设计形式,数据可视化的第一要义是简单易懂,所以在遇到标签文字过长时,可以采用将柱状图转化为条形图


(2)条形图

定义:条形图是用宽度相同的条形的高度或长短来表示数据多少的图形。条形图能够使人们一眼看出各个数据的大小,易于比较数据之间的差别。当条目较多,如大于12条,移动端上的柱状图会显得拥挤不堪,更适合使用条形图。

特点:

1、与柱状图类似,只是交换了X轴与Y轴位置;

2、多用于竖长的显示区域,例如手机端、大屏的一侧;

3、多用于top排行或分类名称较长的情况;

4、数量一般不超过30条,否则易带来视觉和记忆负担

使用建议:

1、采用有序排列,轴标签右对齐

对多个数据系列排序时,如果不涉及到日期等特定数据,最好能符合一定的逻辑用直观的方式引导用户更好的查看数据。

可以通过升序或降序排布,例如按照数量从多到少来对数据进行排序,也可以按照字母顺序等来排布。总之,按照逻辑排序可以一定程度上引导人们更好地阅读数据。

2、标签直接显示在柱体上

条形图还可以通过省略横轴和纵轴,并直接在柱子上表明数值,来降低数据墨水比,进一步提高信息的获取效率。


(3)折线图

定义:用于显示数据在一个连续的时间间隔或者时间跨度上的变化,它的特点是反映事物随时间或有序类别而变化的趋势。折线图分为直线折线图和曲线折线图。折线图可以清晰的反映数据是递增还是递减、增减的速率、增减的规律(周期性、螺旋性等)、峰值等特征。

特点:

1、横轴如果不是表示连续数值,折线图的意义不大

2、数量一般不少于3条,否则用柱状图更合适

使用建议:

1、反映事物随时间或有序类别而变化的趋势

折线图看的是趋势,所有不是有序类别的不适合使用折线图

2、视觉美化

折线图可以清晰的反映数据是递增还是递减,不能和面积图累计的概念混淆,由于折线图放在界面上的视觉重量很弱,所以我们可以通过添加微渐变加重视觉。




(4)面积图

定义:面积图又叫区域图。 它是在折线图的基础之上形成的, 它将折线图中折线与自变量坐标轴之间的区域使用颜色或者纹理填充,颜色的填充可以更好的突出趋势信息,需要注意的是颜色要带有一定的透明度,透明度可以很好地帮助使用者观察不同序列之间的重叠关系,没有透明度的面积会导致不同序列之间相互遮盖,减少可以被观察到的信息。

使用建议:

1、不要超过7个序列

当数据系列过多时,往往造成用户难以观察的痛苦,所以建议使用堆叠面积图时数据系列最好不要超过7个。


(5)分组条形图

分组条形图属于条形图的一种,又叫簇状条形图,是一种以不同分组高度相同的长方形的宽度为变量的统计图表,每个分组中的柱子使用不同的颜色或者相同颜色不同透明的方式区别各个分类,各个分组之间需要保持间隔。

特点:

1、适用场景

分组条形图适用于表达相同分类不同组别的数据,或者相同组别不同分类的数据,简而言之,就是根据一个相同变量的不同分组进行数据表达。

2、不适用场景

分组条形图不适合用于表达分组过多的,数据量较大的数据,也不适合用于表达趋势类的数据。



(6)双向条形图

定义:双向柱状图又叫正负条形图,是使用正向和反向的柱子显示类别之间的数值比较,其中分类轴表示需要对比的分类维度,连续轴代表相应的数值。


(7)玫瑰图

定义:一种圆形直方图,使用半径长短表示数值大小。可以在视觉上夸大数据之间的差异。

特点:

1、由于面积等于半径的平方,玫瑰图会将数值之间的差异放大

2、南丁格尔玫瑰图不能用于表示占比构成

3、数量:一般 不超过30条,否则易带来视觉和记忆负担


(8)雷达图

定义:雷达图又称为蜘蛛网图、网络图,蜘蛛图,星图,是以在同一点开始的轴上显示的三个或更多个变量的二维图表的形式来显示多元数据的方法,所有这些方面都可以类似地量化,常用于排名、评估、评论等数据的展示,比如我们玩王者荣耀中英雄的各项性能指标。

特点:

1、指标得分接近圆心,说明处于较差状态,应分析改进;指标得分接近外变现,说明处于理想状态

2、数量控制在5-8个最佳


(9)子弹图

定义:对比分类数据的数值大小以及是否达标

特点:

1、可以通过标记刻度区间,来进行更好的评估

2、数量控制在10个以内


(10)漏斗图

定义:由多个梯形从上而下叠加而成。从上到下的项有逻辑上的顺序关系,梯形面积表示某个业务量与上一个环节之间的差异,通过漏斗各环节业务数据的比较,能够直观地发现和说明问题所在,为决策者提供一定的参考。

特点:

适用于业务流程比较规范、周期长、环节多的单流程单向分析,不适合表示无逻辑顺序的分类对比

使用建议:

1、漏斗图不是表示各个分类的占比情况,而是展示数据变化的一个逻辑流程,如果数据是无逻辑顺序的占比比较,建议使用饼图更合适。

2、可以根据数据选择使用对比色或同一种颜色的色调渐变,从最暗到最浅来依照漏斗的尺寸排列。切记,不要添加许多图层和颜色造成漏斗图难以阅读。


比较类图表总结

2.2.2 构成类图表

(1)饼图

定义:用于表示不同分类的占比情况,通过弧度大小来对比各种分类,将一个圆饼按照分类的占比划分成多个区块,整个圆饼代表数据的总量,每个圆弧所在的块表示该分类占总体的比例大小,所有圆弧所在的块组成的圆饼等于 100%,这样可以很好地帮助用户快速了解数据的占比分配。

特点:

1、可以通过标记刻度区间,来更好的评估

2、数量控制在10个以内

使用建议:

1、饼图适合用来展示单一维度数据的占比,要求其数值中没有零或负值,并确保各分块占比总和为100%

2、饼图不适合被用于数据的比较


(2)环图

定义:本质是将饼图中间区域挖空

特点:

1、饼图的整体性太强,我们会将注意力更多集中在扇形的面积上,环图则可以很好地避免这个问题

2、建议分类数量不超过9个

使用建议:

饼图更加集中面积,环图会集中在角度和弧长上,所以我们中间的空间利用率还可以更好的利用。


(3)旭日图

定义:旭日图(Sunburst)由多层的环形图组成,在数据结构上,内圈是外圈的父节点。因此,它既能像饼图一样表现局部和整体的占比,又能像矩形树图一样表现层级关系。

特点:

1、旭日图=N张饼图

2、离远心越近,代表层级越高

3、下一层级的总和构成上一层级

4、可以无限向外扩展

(4)堆叠面积图

定义:堆积面积图是一种特殊的面积图,可以用来比较在一个区间内的多个变量。如果有多个数据系列,并想分析每个类别的部分到整体的关系,并展现部分量对于总量的贡献时,使用堆积面积图是非常合适的选择。

特点:

1、适合表达总量和分量的构成情况

2、分类指标的纵轴起点,并不是从0开始,而是在上一个分类基础上叠加

使用建议:

1、图表有重叠的数据时,类别数量越多,重叠越多,因此可见度越低,所以不建议堆叠面积图中包含过多数据系列.

2、堆积面积图要展示部分和整体之间的关系,所以不能用于包含负值的数据的展示。

3、建议堆叠面积图中把变化量较大的数据放在上方,变化量较小的数据放在下方会获得更好的展示效果。


(5)堆叠柱状图

定义:堆叠柱状图是柱状图的扩展,不同的是,柱状图的数据值为并行排列,堆叠柱图则是一个个叠加起来的。它可以展示每一个分类的总量,以及该分类包含的每个小分类的大小及占比,因此非常适合处理部分与整体的关系。

特点:

1、二级分类并不是按照同一基准对齐的

使用建议:

大多数的堆叠柱状图都是垂直绘制的,但是如果你的数据标签特别长时,考虑更好地展示效果,可以选择使用水平堆叠的方式。


(6)瀑布图

定义:通过显示正值(收入)和负值(支出)对总量的贡献来显示结果累积的过程,因为形似瀑布流水而被称之为瀑布图。瀑布图通过巧妙的设置,使图表中数据的排列形状(称为浮动列)看似瀑布悬空,从而反映数据在不同时期或受不同因素影响的程度及结果,还可以直观反映出数据的增减变化,在工作表中非常实用。

特点:

1、过程值为正的时候,向上加;

2、过程值为负的时候,向下减;

构成类图标总结

2.2.3 分布和联系类图表

(1)地图

定义:特殊高亮的形式显示数据集中的区域和数据所在的地理区域的图示。使用地图作为背景,对数据的地理分布显示直观通过颜色深浅、气泡大小等容易判断度量的大小,将数据在不同地理位置上的分布通过颜色或者气泡映射在地图上。

特点:

1、结合散点:位置坐标更清晰

2、结合飞线图:表达起始点和目标点的链接或流向关系

使用建议:

1、必须要有地理位置

2、展现的通常是以某个地区为单位的汇总的连续信息

3、当你用基于地图的热力图的时候,颜色梯度变化一定是有规律的,一定根据数值递增递减来变化的,否则在视觉上产生错误引导


(2)散点图

定义:数据点在直角坐标系平面上的分布图,表示因变量随自变量而变化的大致趋势。

(3)气泡图

定义:气泡图是显示变量之间相关性的一种图表。与散点图类似。在直角坐标系中显示数据的两个变量(X和Y轴)之间的关系,数据显示为点的集合。与散点图不同的是,气泡图是一个多变量图,它增加了第三个数值即气泡大小的变量,在气泡图中,较大的气泡表示较大的值。可以通过气泡的位置分布和大小比例,来分析数据的规律。

特点:

有一定的数据量是展现三个变量之前的相关性,数据具有3个序列、特征及相关值。

举个栗子:

我们回归到线下场景,我们通常在逛生鲜超市类如盒马生鲜、沃尔玛等,会发现里面售卖的鸡蛋、生鲜类会比外面便宜很多,因为他们容易过期,属于成本极高的食品,通过限购来让他们引流,从而吸引更多的顾客来买那些成本低、单品收入高的商品。

三、总结

最后给大家总结一下,首先我们拿到数据后先明确我们的使用目标,是让用户用最短的时间了解到数据带来的信息,结合每个图表的优缺点,选择合适的图表,从需求和目标出发,切忌盲目的增加和删减元素,图表的易用性大于它的美观度。



 

 


以上就是本篇文章的全部内容,数据可视化是一门庞大系统的科学,关于可视化相关的知识还有很多没有涉及到,例如可视化图表的构成、图表运用场景、数据可视化大屏等等,后续希望大家持续关注。


参考文献:

《CCtalk B端产品设计》by 美芳

蚂蚁数据可视化

设计师要了解的数据可视化 —— 基础篇

ECharts数据可视化


文章来源:站酷   作者:佩奇一只居

蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、 网站建设 平面设计服务


初识数据可视化——图表(基础篇)

鹤鹤

深度挖掘数据可视化图表设计的框架和规范

在B端设计中,数据可视化是必不可少而且非常重要,越来越多的设计师需要和数据打交道,但是很多设计师不懂可视化当中不同用途的图表规范,只是单纯设计出好看的数据图表,却不能给用户带来更多的信息和价值。


因此掌握数据可视化能力是设计师必不可少的一个技能,然而目前国内互联网对于数据的教学不够全面,这让很多B端的设计师很苦恼,所以今天我结合自己的工作经验和大家分享一下--“数据可视化之图表设计”,为大家梳理一套完整的数据可视化的框架,以及关于视化设计基本准则规范。帮助大家理解什么样的数据对应什么样的图标,了解颜色的意义,知道数据排版的要点。


一、基础概念

将不可见的数据转化为可见的图形和符号,从中发现规律和特征,以获取更多的信息和价值。

在当前互联网的时代下,一页图可能对标一个庞大且复杂的数据表格,按照人类本身对图的记忆远大于对抽象文字的记忆,所以我们要学会让数据说话,数据可视化除了“简洁直观”,还可有容易理解和记忆、传递信息更丰富的特点。

接下来我们开始思考如何制作数据可视化图标?首先规范的流程是最好的前提,下面的工作流程结合我自己的经验和日常企业的数据分析场景,找到了一个合适的参考,我们就可以步步为营,避免很多不必要的返工,保证设计质量和项目进度。


二、选定可视化图表

很多小伙伴在做可视化图表设计过程中,肯定遇到过这样的困扰,发现自己做完的图标并未能准确表达自己的意图,也无法传达自己的意图,图表通常让用户看完困惑不已,主要问题出现在分析的维度没有找准或定义的比较混乱,面对B端庞大复杂的图标,同样的一个指标的数据,我们从不同维度分析就会出现不同结果。用一句古话来形容:横看成岭侧成峰。


国外专家Andrew Abela曾整理了一份图表类型选择指南图示,他把数据的关系分成了4种类型,帮助我们去选择合适的图表来呈现,我对其进行了总结并美化(如下图)。

上图向大家展示了数据分析常用的4个维度,我们在选定数据指标后,我们需要和数据产品经理沟通我们核心需求,是我们想通过可视化向用户传递什么价值信息。上图引导我们从“联系、分布、比较、构成”四个维度更有逻辑的思考这个问题,我们在进行图表设计时首先进行需求的分析,熟悉数据并且明确数据要展现出来的信息,然后选用合适的图表来进行数据的展现。

联系:数据之间的相关性

分布:指标里的数据主要集中在什么范围、表现出怎样的规律

比较:数据之间存在何种差异、差异主要体现在哪些方面

构成:指标里的数据都由哪几部分组成、每部分占比如何

考虑到日常企业的数据分析场景,图中有些图表使用频率是非常低的。所以我参考了上图的部分内容,对其进行了总结,重新整合成三个维度

图表的作用,是帮助我们更好地看懂数据。选择什么图表,需要回答的首要问题是『我有什么数据,需要用图表做什么』,而不是 『图表长成什么样』 ,根据数据选用合适的图表展现来把数据的信息传达给用户。因此我们从数据出发、熟悉每种图表的定义、适用场景、优缺点,从功能角度对图表进行分类,这样才能快速选择合适的图表。

2.2.1 比较类图表

(1)柱状图

定义:柱状图是一种以长方形的长度为变量的统计图表。长条图用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析

特点:

1、这个分类不限于地区、品牌等,可以是一个时间周期;

2、数量控制在5-12条最佳;

使用建议:

1、使用合适的宽度去适配柱条的宽度

当柱子太窄时,用户的视觉可能会集中在两个柱中间的负空间,而这里是不承载任何数据的。宽度推荐使用在1/2 柱宽到 1 柱宽之间,但也要视情况而定。

2、不推荐采用全圆角

柱形图可以有适当的圆角,全圆角则有可能歪曲可视化图表的表达,用户可能无法明确是圆心还会顶点作为峰值。

3、不要使用非水平和竖直的文字标注,也不要使用转行

有时坐标轴上的注释文字会很多,所以很多人为了妥协,在小空间内显示出所有的文字标注内容,而使用倾斜的文本,或者将文本转行处理。

不要用过于复杂的设计形式,数据可视化的第一要义是简单易懂,所以在遇到标签文字过长时,可以采用将柱状图转化为条形图


(2)条形图

定义:条形图是用宽度相同的条形的高度或长短来表示数据多少的图形。条形图能够使人们一眼看出各个数据的大小,易于比较数据之间的差别。当条目较多,如大于12条,移动端上的柱状图会显得拥挤不堪,更适合使用条形图。

特点:

1、与柱状图类似,只是交换了X轴与Y轴位置;

2、多用于竖长的显示区域,例如手机端、大屏的一侧;

3、多用于top排行或分类名称较长的情况;

4、数量一般不超过30条,否则易带来视觉和记忆负担

使用建议:

1、采用有序排列,轴标签右对齐

对多个数据系列排序时,如果不涉及到日期等特定数据,最好能符合一定的逻辑用直观的方式引导用户更好的查看数据。

可以通过升序或降序排布,例如按照数量从多到少来对数据进行排序,也可以按照字母顺序等来排布。总之,按照逻辑排序可以一定程度上引导人们更好地阅读数据。

2、标签直接显示在柱体上

条形图还可以通过省略横轴和纵轴,并直接在柱子上表明数值,来降低数据墨水比,进一步提高信息的获取效率。


(3)折线图

定义:用于显示数据在一个连续的时间间隔或者时间跨度上的变化,它的特点是反映事物随时间或有序类别而变化的趋势。折线图分为直线折线图和曲线折线图。折线图可以清晰的反映数据是递增还是递减、增减的速率、增减的规律(周期性、螺旋性等)、峰值等特征。

特点:

1、横轴如果不是表示连续数值,折线图的意义不大

2、数量一般不少于3条,否则用柱状图更合适

使用建议:

1、反映事物随时间或有序类别而变化的趋势

折线图看的是趋势,所有不是有序类别的不适合使用折线图

2、视觉美化

折线图可以清晰的反映数据是递增还是递减,不能和面积图累计的概念混淆,由于折线图放在界面上的视觉重量很弱,所以我们可以通过添加微渐变加重视觉。




(4)面积图

定义:面积图又叫区域图。 它是在折线图的基础之上形成的, 它将折线图中折线与自变量坐标轴之间的区域使用颜色或者纹理填充,颜色的填充可以更好的突出趋势信息,需要注意的是颜色要带有一定的透明度,透明度可以很好地帮助使用者观察不同序列之间的重叠关系,没有透明度的面积会导致不同序列之间相互遮盖,减少可以被观察到的信息。

使用建议:

1、不要超过7个序列

当数据系列过多时,往往造成用户难以观察的痛苦,所以建议使用堆叠面积图时数据系列最好不要超过7个。


(5)分组条形图

分组条形图属于条形图的一种,又叫簇状条形图,是一种以不同分组高度相同的长方形的宽度为变量的统计图表,每个分组中的柱子使用不同的颜色或者相同颜色不同透明的方式区别各个分类,各个分组之间需要保持间隔。

特点:

1、适用场景

分组条形图适用于表达相同分类不同组别的数据,或者相同组别不同分类的数据,简而言之,就是根据一个相同变量的不同分组进行数据表达。

2、不适用场景

分组条形图不适合用于表达分组过多的,数据量较大的数据,也不适合用于表达趋势类的数据。



(6)双向条形图

定义:双向柱状图又叫正负条形图,是使用正向和反向的柱子显示类别之间的数值比较,其中分类轴表示需要对比的分类维度,连续轴代表相应的数值。


(7)玫瑰图

定义:一种圆形直方图,使用半径长短表示数值大小。可以在视觉上夸大数据之间的差异。

特点:

1、由于面积等于半径的平方,玫瑰图会将数值之间的差异放大

2、南丁格尔玫瑰图不能用于表示占比构成

3、数量:一般 不超过30条,否则易带来视觉和记忆负担


(8)雷达图

定义:雷达图又称为蜘蛛网图、网络图,蜘蛛图,星图,是以在同一点开始的轴上显示的三个或更多个变量的二维图表的形式来显示多元数据的方法,所有这些方面都可以类似地量化,常用于排名、评估、评论等数据的展示,比如我们玩王者荣耀中英雄的各项性能指标。

特点:

1、指标得分接近圆心,说明处于较差状态,应分析改进;指标得分接近外变现,说明处于理想状态

2、数量控制在5-8个最佳


(9)子弹图

定义:对比分类数据的数值大小以及是否达标

特点:

1、可以通过标记刻度区间,来进行更好的评估

2、数量控制在10个以内


(10)漏斗图

定义:由多个梯形从上而下叠加而成。从上到下的项有逻辑上的顺序关系,梯形面积表示某个业务量与上一个环节之间的差异,通过漏斗各环节业务数据的比较,能够直观地发现和说明问题所在,为决策者提供一定的参考。

特点:

适用于业务流程比较规范、周期长、环节多的单流程单向分析,不适合表示无逻辑顺序的分类对比

使用建议:

1、漏斗图不是表示各个分类的占比情况,而是展示数据变化的一个逻辑流程,如果数据是无逻辑顺序的占比比较,建议使用饼图更合适。

2、可以根据数据选择使用对比色或同一种颜色的色调渐变,从最暗到最浅来依照漏斗的尺寸排列。切记,不要添加许多图层和颜色造成漏斗图难以阅读。


比较类图表总结

2.2.2 构成类图表

(1)饼图

定义:用于表示不同分类的占比情况,通过弧度大小来对比各种分类,将一个圆饼按照分类的占比划分成多个区块,整个圆饼代表数据的总量,每个圆弧所在的块表示该分类占总体的比例大小,所有圆弧所在的块组成的圆饼等于 100%,这样可以很好地帮助用户快速了解数据的占比分配。

特点:

1、可以通过标记刻度区间,来更好的评估

2、数量控制在10个以内

使用建议:

1、饼图适合用来展示单一维度数据的占比,要求其数值中没有零或负值,并确保各分块占比总和为100%

2、饼图不适合被用于数据的比较


(2)环图

定义:本质是将饼图中间区域挖空

特点:

1、饼图的整体性太强,我们会将注意力更多集中在扇形的面积上,环图则可以很好地避免这个问题

2、建议分类数量不超过9个

使用建议:

饼图更加集中面积,环图会集中在角度和弧长上,所以我们中间的空间利用率还可以更好的利用。


(3)旭日图

定义:旭日图(Sunburst)由多层的环形图组成,在数据结构上,内圈是外圈的父节点。因此,它既能像饼图一样表现局部和整体的占比,又能像矩形树图一样表现层级关系。

特点:

1、旭日图=N张饼图

2、离远心越近,代表层级越高

3、下一层级的总和构成上一层级

4、可以无限向外扩展

(4)堆叠面积图

定义:堆积面积图是一种特殊的面积图,可以用来比较在一个区间内的多个变量。如果有多个数据系列,并想分析每个类别的部分到整体的关系,并展现部分量对于总量的贡献时,使用堆积面积图是非常合适的选择。

特点:

1、适合表达总量和分量的构成情况

2、分类指标的纵轴起点,并不是从0开始,而是在上一个分类基础上叠加

使用建议:

1、图表有重叠的数据时,类别数量越多,重叠越多,因此可见度越低,所以不建议堆叠面积图中包含过多数据系列.

2、堆积面积图要展示部分和整体之间的关系,所以不能用于包含负值的数据的展示。

3、建议堆叠面积图中把变化量较大的数据放在上方,变化量较小的数据放在下方会获得更好的展示效果。


(5)堆叠柱状图

定义:堆叠柱状图是柱状图的扩展,不同的是,柱状图的数据值为并行排列,堆叠柱图则是一个个叠加起来的。它可以展示每一个分类的总量,以及该分类包含的每个小分类的大小及占比,因此非常适合处理部分与整体的关系。

特点:

1、二级分类并不是按照同一基准对齐的

使用建议:

大多数的堆叠柱状图都是垂直绘制的,但是如果你的数据标签特别长时,考虑更好地展示效果,可以选择使用水平堆叠的方式。


(6)瀑布图

定义:通过显示正值(收入)和负值(支出)对总量的贡献来显示结果累积的过程,因为形似瀑布流水而被称之为瀑布图。瀑布图通过巧妙的设置,使图表中数据的排列形状(称为浮动列)看似瀑布悬空,从而反映数据在不同时期或受不同因素影响的程度及结果,还可以直观反映出数据的增减变化,在工作表中非常实用。

特点:

1、过程值为正的时候,向上加;

2、过程值为负的时候,向下减;

构成类图标总结

2.2.3 分布和联系类图表

(1)地图

定义:特殊高亮的形式显示数据集中的区域和数据所在的地理区域的图示。使用地图作为背景,对数据的地理分布显示直观通过颜色深浅、气泡大小等容易判断度量的大小,将数据在不同地理位置上的分布通过颜色或者气泡映射在地图上。

特点:

1、结合散点:位置坐标更清晰

2、结合飞线图:表达起始点和目标点的链接或流向关系

使用建议:

1、必须要有地理位置

2、展现的通常是以某个地区为单位的汇总的连续信息

3、当你用基于地图的热力图的时候,颜色梯度变化一定是有规律的,一定根据数值递增递减来变化的,否则在视觉上产生错误引导


(2)散点图

定义:数据点在直角坐标系平面上的分布图,表示因变量随自变量而变化的大致趋势。

(3)气泡图

定义:气泡图是显示变量之间相关性的一种图表。与散点图类似。在直角坐标系中显示数据的两个变量(X和Y轴)之间的关系,数据显示为点的集合。与散点图不同的是,气泡图是一个多变量图,它增加了第三个数值即气泡大小的变量,在气泡图中,较大的气泡表示较大的值。可以通过气泡的位置分布和大小比例,来分析数据的规律。

特点:

有一定的数据量是展现三个变量之前的相关性,数据具有3个序列、特征及相关值。

举个栗子:

我们回归到线下场景,我们通常在逛生鲜超市类如盒马生鲜、沃尔玛等,会发现里面售卖的鸡蛋、生鲜类会比外面便宜很多,因为他们容易过期,属于成本极高的食品,通过限购来让他们引流,从而吸引更多的顾客来买那些成本低、单品收入高的商品。

三、总结

最后给大家总结一下,首先我们拿到数据后先明确我们的使用目标,是让用户用最短的时间了解到数据带来的信息,结合每个图表的优缺点,选择合适的图表,从需求和目标出发,切忌盲目的增加和删减元素,图表的易用性大于它的美观度。



 

 



文章来源:站酷   作者:佩琦一只局

蓝蓝设计www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的UI界面设计、BS界面设计 、 cs界面设计 、 ipad界面设计 、 包装设计 、 图标定制 、 用户体验 、交互设计、 网站建设 平面设计服务





日历

链接

个人资料

蓝蓝设计的小编 http://www.lanlanwork.com

存档