想法简述
随着人工智能 (AI) 越来越深入地融入产品,设计师必须了解这些系统真正能做什么。本文介绍了一个围绕感知、推理、记忆和代理四大核心能力构建的实用框架,旨在帮助用户体验 (UX) 专业人士设计更智能、更值得信赖的 AI 体验。本书包含真实案例和实用技巧,对于任何致力于塑造 AI 界面未来的人士来说,都是必读之作。
许多人认为,人工智能代理已经存在,只是分布不均。然而,目前很少有案例能够展现与这种近未来人工智能的良好交互体验。幸运的是,在最近的 AWS Re: Invent 大会上,我偶然发现了一个与人工智能代理交互的用户体验的绝佳示例,我迫不及待地想在本文中与大家分享这一愿景。但首先,人工智能代理究竟是什么?
想象一下一个蚁群。在一个典型的蚁群中,有不同专长的蚂蚁:工蚁、兵蚁、雄蚁、蚁后等等。蚁群中的每只蚂蚁都有不同的工作——它们独立运作,但又像一个紧密结合的整体。你可以“雇佣”一只蚂蚁(代理)为你做一些简单的半自主工作,这本身就很酷。然而,试想一下,你可以雇佣整个蚁丘去做一些更复杂或更有趣的事情:找出你的系统出了什么问题,预订你的行程,或者……做几乎所有人类在电脑前能做的事情。每只蚂蚁本身并不非常聪明——它们高度专业化,专注于完成特定的工作。然而,不同专长的蚂蚁组合在一起,呈现出一种我们将其与高级动物联系起来的“集体智慧”。我们在博客中一直使用的“人工智能”(AI)与人工智能代理之间最显著的区别在于自主性。您不需要向 AI 代理提供精确的指令或等待同步输出 - 与一组 AI 代理的整个交互更加流畅和灵活,就像蚁丘解决问题一样。
代理型人工智能 (Agentic AI) 的工作方式多种多样——这是一个内容丰富的主题,值得专门写一本书来探讨(或许一两年后)。在本文中,我们将以系统故障排除为例,阐述一个涉及主管代理(也称为“推理代理”)和多个工作代理的复杂流程。该流程始于人类操作员收到问题警报。他们启动调查,然后由主管代理领导的半自主 AI 代理团队帮助他们找到根本原因,并提出解决问题的建议。让我们用步骤图来分解与 AI 代理交互的过程:
上图所示的多阶段代理工作流程包含以下步骤:
如同与典型的人类组织签订合同一样,主管AI代理拥有一支由专业AI代理组成的团队。主管可以将消息路由到其监管下的任何AI工作代理,这些代理将执行任务并反馈给主管。主管可以选择将任务分配给特定代理,并在稍后获得更多信息时发送附加指令。最后,任务完成后,输出将反馈给用户。然后,人类操作员可以选择向主管AI代理提供反馈或附加任务,在这种情况下,整个流程将重新开始。
人类无需担心任何内部事务——所有事务都由“主管”以半自主的方式处理。人类所做的只是提出一个通用请求,然后审查并响应这个代理“组织”的输出。如果你能做到这一点,这正是你与蚁群沟通的方式:你将工作分配给蚁后,让她管理所有工蚁、兵蚁、雄蚁等等。与蚁群类似,单个专业代理不需要特别聪明,也不需要直接与人类操作员沟通——它们只需要能够半自主地解决它们被设计执行的专业任务,并将精确的输出反馈给“主管”代理,仅此而已。“主管”代理的工作就是完成所有的推理和沟通。这种人工智能模型更高效、更经济,并且在许多任务中都非常实用。让我们来看看交互流程,以便更好地感受这种体验在现实世界中的感受。
为简单起见,我们将遵循本文前面的工作流程图,流程中的每个步骤都与图中的步骤相对应。此示例来自AWS Re: Invent 2024 — 不要停滞不前:互联遥测如何助您前进 (COP322),由 YouTube 上的 AWS Events 主持,从 53 分钟开始。
该流程始于用户发现名为“bot-service”的服务(屏幕截图左上角)故障急剧增加,并启动新的调查。然后,用户将所有相关信息以及一些额外的指令传递给主管代理。
现在,在步骤 2 中,主管代理接收请求并生成一组工作 AI 代理,这些代理将半自主地查看系统的不同部分。该过程是异步的,这意味着右侧的建议初始状态为空:调查启动后不会立即显示结果。
现在,工作代理返回了一些“建议的观察结果”,这些结果由主管处理并添加到屏幕右侧的建议中。请注意,屏幕右侧现在更宽了,以便于阅读代理建议。在下面的屏幕中,不同的代理提出了两个截然不同的观察结果,第一个代理专门负责服务指标,第二个代理专门负责跟踪。
这些“建议的观察结果”构成了调查中的“证据”,旨在找出问题的根本原因。为了找出根本原因,此流程中的人类操作员会提供帮助:他们会向主管代理反馈哪些观察结果最相关。因此,主管代理和人类操作员并肩协作,找出问题的根本原因。
人工操作员会点击“接受”按钮,确认他们认为相关的观察结果,这些结果会被添加到屏幕左侧的调查“案例档案”中。现在,人工操作员已经添加了反馈,表明他们认为这些信息是相关的,代理流程将启动调查的下一阶段。主管代理收到用户反馈后,将不再发送“更多相同的信息”,而是会进行更深入的挖掘,甚至可能调查系统的其他方面,以寻找根本原因。请注意,下图中右侧出现的新建议属于另一种类型——它们现在正在查看日志以寻找根本原因。
最后,主管代理掌握了足够的信息,开始尝试找出问题的根本原因。因此,它从证据收集转向推理根本原因。在步骤3和4中,主管代理提供了“建议性观察”。现在,在步骤5中,它准备好进行重大揭秘(也可以称之为“结局场景”),因此,就像文学侦探一样,主管代理提出了它的“假设建议”。(这让人想起游戏“线索”,玩家轮流提出“建议”,然后,当他们准备好发起攻击时,他们就会提出“指控”。主管代理在这里也做了同样的事情!)
建议的假设是正确的,当用户点击“接受”时,主管代理会提供后续步骤来解决问题,并防止将来再次出现类似问题。代理似乎在对人类指手画脚,建议他们“实施适当的变更管理程序”——这是任何良好系统卫生的基础!
代理流如此引人注目,并成为当今众多人工智能开发工作的焦点,原因有很多。代理引人注目、经济实惠,并且能够实现更加自然灵活的人机界面。代理能够填补人类与机器之间沟通的空白,真正实现人机思维的融合,形成超越人类的“增强智能”,其价值远超其各部分之和。然而,要从与代理的交互中获得最大价值,也需要我们彻底改变对人工智能的理解方式,以及设计支持代理交互的用户界面的方式:
无论你对人工智能代理有何看法,它们无疑会与人类同行共同发展,并持续存在。因此,我们必须了解代理人工智能的工作原理,以及如何设计能够让我们安全高效地与它们协同工作的系统,充分发挥人类和机器各自的优势。
兰亭妙微(www.lanlanwork.com )是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的大数据可视化界面设计、B端界面设计、桌面端界面设计、APP界面设计、图标定制、用户体验设计、交互设计、UI咨询、高端网站设计、平面设计,以及相关的软件开发服务,咨询电话:01063334945。我们建立了一个微信群,每天分享国内外优秀的设计,有兴趣请加入一起学习成长,咨询及进群请加蓝小助微信ben_lanlan。